-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathincome.py
46 lines (38 loc) · 1.17 KB
/
income.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import pandas as pd
import plotly
import plotly.graph_objs as go
from plotly.offline import *
df = pd.read_csv('processed.csv')
for col in df.columns:
df[col] = df[col].astype(str)
scl = [[0.0, 'rgb(197,27,138)'], [0.5, 'rgb(250,159,181)'],
[1.0, 'rgb(253,224,221)']]
df['text'] = df['state'] + '<br>' +\
'Median Household Income'+df['income']
data = [ dict(
type='choropleth',
colorscale = scl,
autocolorscale = False,
locations = df['code'],
z = df['income'].astype(float),
locationmode = 'USA-states',
text = df['text'],
marker = dict(
line = dict (
color = 'rgb(255,255,255)',
width = 2
) ),
colorbar = dict(
title="Median Household Income")
) ]
layout = dict(
title='Median Household Income, 2016 Census Estimate',
geo = dict(
scope='usa',
projection=dict( type='albers usa' ),
showlakes = True,
lakecolor = 'rgb(255, 255, 255)'),
)
fig = dict( data=data, layout=layout )
plotly.offline.plot( fig, filename='income_map' )