forked from prasadtalasila/IRCLogParser
-
Notifications
You must be signed in to change notification settings - Fork 1
/
slack.py
230 lines (176 loc) · 11.1 KB
/
slack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
from __future__ import print_function
from lib.slack.in_out import reader
from lib.in_out import saver
import lib.slack.nickTracker as nickTracker, lib.slack.config as config, lib.vis as vis, lib.validate as validate, lib.slack.util as util
from lib.analysis import user, community
from lib.slack.analysis import network, channel
import numpy as np
import networkx as nx
import gc
import datetime
log_directory = config.LOG_DIRECTORY
channel_name = config.CHANNEL_NAME
starting_date = config.STARTING_DATE
ending_date = config.ENDING_DATE
output_directory = config.OUTPUT_DIRECTORY
exec_times_file = open(output_directory + "execution_times.txt", 'w')
degree_type = ["out_degree", "in_degree", "total_degree"]
print("begin at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
# ============== INPUT==================
log_data = reader.linux_input_slack(log_directory, starting_date, ending_date)
nicks, nick_same_list = nickTracker.nick_tracker(log_data)
print("reading log files completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
# ============== MESSAGE BINS HEATMAP =============
bin_matrix, total_messages = network.message_number_bins_csv(log_data, nicks, nick_same_list)
data = [[i for i in range(len(bin_matrix[0]))]]
data.append([sum(i) for i in zip(*bin_matrix)])
saver.save_csv(bin_matrix, output_directory, "MessageNumber_binsize_"+str(config.BIN_LENGTH_MINS))
vis.plot_data (data, output_directory, "bins")
print("msg bins completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
del bin_matrix, total_messages, data
gc.collect()
print("msg bins gc completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
# ============== CONVERSATION CHARACTERISTICS =============
default_cutoff = config.CUTOFF_PERCENTILE
#percentiles = [0, 1, 5, 10, 20]
percentiles = [1]
for cutoff in percentiles:
config.CUTOFF_PERCENTILE = cutoff
truncated_rt, rt_cutoff_time = channel.response_time(log_data, nicks, nick_same_list, config.CUTOFF_PERCENTILE)
conv_len, conv_ref_time = channel.conv_len_conv_refr_time(log_data, nicks, nick_same_list, rt_cutoff_time, config.CUTOFF_PERCENTILE)
saver.save_csv(conv_len, output_directory, "conv_len-cutoff-" + str(cutoff))
saver.save_csv(truncated_rt, output_directory, "resp_time-cutoff-" + str(cutoff))
saver.save_csv(conv_ref_time, output_directory, "conv_ref_time-cutoff-" + str(cutoff))
conv_len_curve_fit_parameters = vis.exponential_curve_fit_and_plot(conv_len, output_directory, "conv_len_cutoff" + str(cutoff))
resp_time_curve_fit_parameters = vis.exponential_curve_fit_and_plot(truncated_rt, output_directory, "resp_time_cutoff" + str(cutoff))
conv_ref_time_curve_fit_parameters = vis.exponential_curve_fit_and_plot_x_shifted(conv_ref_time, output_directory, "conv_ref_time_cutoff" + str(cutoff))
saver.save_csv( [["a","b","c", "MSE"], [conv_len_curve_fit_parameters]], output_directory,"conv_len_curve_fit_parameters-cutoff-" + str(cutoff))
saver.save_csv( [["a","b","c", "MSE"], [resp_time_curve_fit_parameters]], output_directory,"resp_time_curve_fit_parameters-cutoff-" + str(cutoff))
saver.save_csv( [["a","b","c", "MSE"], [conv_ref_time_curve_fit_parameters]], output_directory,"conv_ref_time_curve_fit_parameters-cutoff-"+str(cutoff))
saver.save_csv([["response_time_cutoff"], [rt_cutoff_time]], output_directory, "rt_cutoff-" + str(cutoff))
print("work for cutoff = ", cutoff, "completed at: ", datetime.datetime.now(), file=exec_times_file)
config.CUTOFF_PERCENTILE = default_cutoff #revert back to default
del truncated_rt, rt_cutoff_time, conv_len, conv_ref_time
del conv_len_curve_fit_parameters, resp_time_curve_fit_parameters, conv_ref_time_curve_fit_parameters
gc.collect()
print("conversation characteristics gc completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
# ============== MESSAGE EXCHANGE GRAPH ANALYSIS =============
threshold = config.THRESHOLD_MESSAGE_NUMBER_GRAPH
config.THRESHOLD_MESSAGE_NUMBER_GRAPH = 0
message_number_graph = network.message_number_graph(log_data, nicks, nick_same_list, False)
print("msg exchange graph with cutoff=0 generated at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
saver.save_csv([["month", "users", "directed_messages"], ["Jan-2013", len(message_number_graph), int(message_number_graph.size('weight'))]], output_directory, "users_messages")
degree_anal_message_number = network.degree_analysis_on_graph(message_number_graph)
print("msg exchange graph node degree analysis completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
for dtype in degree_type:
saver.save_csv(degree_anal_message_number[dtype]["formatted_for_csv"], output_directory, dtype)
slope,intercept,r_square,mse = vis.generate_log_plots(degree_anal_message_number[dtype]["raw_for_vis"],
output_directory, "slackware-" +dtype)
saver.save_csv( [["Y","K","R^2", "MSE"], [slope,intercept,r_square,mse]], output_directory, dtype+"-curve-fit")
print("msg exchange graph node degree analysis saved at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
del message_number_graph, degree_anal_message_number
del slope,intercept,r_square,mse
gc.collect()
print("msg exchange with cutoff=0 gc completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
# create a smaller message exchange graph for visualization
config.THRESHOLD_MESSAGE_NUMBER_GRAPH = 20
message_number_graph = network.message_number_graph(log_data, nicks, nick_same_list, False)
saver.save_net_nx_graph (message_number_graph, output_directory, "message_number_graph")
print("msg exchange graph with cutoff=20 generated at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
saver.save_net_nx_graph (message_number_graph, output_directory, "message_number_graph_cutoff_20")
print("msg exchange graph saved at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
saver.draw_nx_graph(message_number_graph, output_directory, "message_number_graph_cutoff_20")
print("msg exchange graph plot completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
config.THRESHOLD_MESSAGE_NUMBER_GRAPH = threshold
del message_number_graph, threshold
gc.collect()
print("msg exchange with cutoff=20 gc completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
# ============== EXPERT IDENTIFICATION USING HITS AND TF-IDF =============
user.keywords_clusters(log_data, nicks, nick_same_list, output_directory, "keywords")
print("TF-IDF keyword clusters completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
threshold = config.THRESHOLD_MESSAGE_NUMBER_GRAPH #store original default config
cutoffs = [10]
#cutoffs = [0, 10, 20]
for cutoff in cutoffs:
config.THRESHOLD_MESSAGE_NUMBER_GRAPH = cutoff
msg_graph_experts, top_hub, top_keyword_overlap, top_auth = network.identify_hubs_and_experts(log_data, nicks, nick_same_list)
print("creation of HITS graph with cutoff =",cutoff, "completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
if cutoff == 10:
saver.draw_nx_graph (msg_graph_experts, output_directory, "hits-cutoff-"+str(cutoff))
print("plot of HITS graph with cutoff =",cutoff, "completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
config.THRESHOLD_MESSAGE_NUMBER_GRAPH = threshold #revert to default config
del msg_graph_experts, cutoff
gc.collect()
print("HITS work completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
# ============== INFOMAPS COMMUNITY DETECTION ON MESSAGE EXCHANGE GRAPH =============
# the net file is for message exchange graph with cutoff= 0
# message_graph, message_community = community.infomap_igraph(ig_graph=None, net_file_location= output_directory + 'message_number_graph.net')
# print("Infomaps CD on message exchange graph completed at: ", datetime.datetime.now(), file=exec_times_file)
# exec_times_file.flush()
# vis.plot_infomap_igraph(message_graph, message_community.membership, output_directory, "msg_infomap")
# print("plot of clusters given by Infomaps CD completed at: ", datetime.datetime.now(), file=exec_times_file)
# exec_times_file.flush()
# del message_graph, message_community
# gc.collect()
# print("gc for expert section completed at: ", datetime.datetime.now(), file=exec_times_file)
# exec_times_file.flush()
# ============== ANALYSIS OF DYNAMIC COMMUNITIES =============
dates = [ ['2013-1-1','2013-1-31'],['2013-6-1','2013-6-30'] ]
cut_offs = [ 0, 10, 20]
for date in dates:
print("dynamic community analysis for", starting_date, "started at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
starting_date = date[0]
ending_date = date[1]
log_data = reader.linux_input_slack(log_directory, starting_date, ending_date)
nicks, nick_same_list = nickTracker.nick_tracker(log_data)
for cutoff in cut_offs:
print("dynamic community analysis for", starting_date, "with cutoff=", cutoff,
"started at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
config.THRESHOLD_MESSAGE_NUMBER_GRAPH = cutoff
message_number_graph = network.message_number_graph(log_data, nicks, nick_same_list, False)
saver.save_net_nx_graph(message_number_graph, output_directory, "message-exchange-" + starting_date + "-cutoff-" + str(cutoff))
saver.save_csv([["month", "users", "directed_messages"], ["Jan-2013", len(message_number_graph),
int(message_number_graph.size('weight'))]], output_directory, "users_messages-" + starting_date + "-cutoff_"
+ str(cutoff))
del message_number_graph
gc.collect()
msg_graph, message_community = community.infomap_igraph(ig_graph=None, net_file_location= output_directory + "message-exchange-" + starting_date + "-cutoff-" + str(cutoff) + '.net')
if cutoff != 0:
# be careful; vis.plot_infomap_igraph() takes a long time to complete on large graphs
print("vis.plot_infomap_igraph() starts for", starting_date, "with cutoff=", cutoff,
"at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
vis.plot_infomap_igraph(msg_graph, message_community.membership, output_directory, "message-exchange-" + starting_date +
"-cutoff-" +str(cutoff))
print("vis.plot_infomap_igraph() ends for", starting_date, "with cutoff=", cutoff,
"at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
del msg_graph, message_community
gc.collect()
print("dynamic community analysis for", starting_date, "with cutoff=", cutoff,
"completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
del log_data, nicks, nick_same_list
gc.collect()
print("dynamic community analysis for", starting_date, "completed at: ", datetime.datetime.now(), file=exec_times_file)
exec_times_file.flush()
exec_times_file.close()