forked from oreilly-japan/deep-learning-from-scratch-3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
functions.py
683 lines (503 loc) · 16.1 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
import numpy as np
import dezero
from dezero import cuda, utils
from dezero.core import Function, Variable, as_variable, as_array
# =============================================================================
# Basic functions: sin / cos / tanh / exp / log
# =============================================================================
class Sin(Function):
def forward(self, x):
xp = cuda.get_array_module(x)
y = xp.sin(x)
return y
def backward(self, gy):
x, = self.inputs
gx = gy * cos(x)
return gx
def sin(x):
return Sin()(x)
class Cos(Function):
def forward(self, x):
xp = cuda.get_array_module(x)
y = xp.cos(x)
return y
def backward(self, gy):
x, = self.inputs
gx = gy * -sin(x)
return gx
def cos(x):
return Cos()(x)
class Tanh(Function):
def forward(self, x):
xp = cuda.get_array_module(x)
y = xp.tanh(x)
return y
def backward(self, gy):
y = self.outputs[0]() # weakref
gx = gy * (1 - y * y)
return gx
def tanh(x):
return Tanh()(x)
class Exp(Function):
def forward(self, x):
xp = cuda.get_array_module(x)
y = xp.exp(x)
return y
def backward(self, gy):
y = self.outputs[0]() # weakref
gx = gy * y
return gx
def exp(x):
return Exp()(x)
class Log(Function):
def forward(self, x):
xp = cuda.get_array_module(x)
y = xp.log(x)
return y
def backward(self, gy):
x, = self.inputs
gx = gy / x
return gx
def log(x):
return Log()(x)
# =============================================================================
# Tensor operations: reshape / transpose / get_item / expand_dims / flatten
# =============================================================================
class Reshape(Function):
def __init__(self, shape):
self.shape = shape
def forward(self, x):
self.x_shape = x.shape
y = x.reshape(self.shape)
return y
def backward(self, gy):
return reshape(gy, self.x_shape)
def reshape(x, shape):
if x.shape == shape:
return as_variable(x)
return Reshape(shape)(x)
class Transpose(Function):
def __init__(self, axes=None):
self.axes = axes
def forward(self, x):
y = x.transpose(self.axes)
return y
def backward(self, gy):
if self.axes is None:
return transpose(gy)
axes_len = len(self.axes)
inv_axes = tuple(np.argsort([ax % axes_len for ax in self.axes]))
return transpose(gy, inv_axes)
def transpose(x, axes=None):
return Transpose(axes)(x)
class GetItem(Function):
def __init__(self, slices):
self.slices = slices
def forward(self, x):
y = x[self.slices]
return y
def backward(self, gy):
x, = self.inputs
f = GetItemGrad(self.slices, x.shape)
return f(gy)
class GetItemGrad(Function):
def __init__(self, slices, in_shape):
self.slices = slices
self.in_shape = in_shape
def forward(self, gy):
xp = dezero.cuda.get_array_module(gy)
gx = xp.zeros(self.in_shape, dtype=gy.dtype)
if xp is np:
np.add.at(gx, self.slices, gy)
else:
xp.scatter_add(gx, self.slices, gy)
return gx
def backward(self, ggx):
return get_item(ggx, self.slices)
def get_item(x, slices):
f = GetItem(slices)
return f(x)
def expand_dims(x, axis):
x = as_variable(x)
shape = list(x.shape)
shape.insert(axis, 1)
return reshape(x, tuple(shape))
def flatten(x):
"""Flattens the input. Does not affect the batch size."""
return reshape(x, (x.shape[0], -1))
# =============================================================================
# sum / sum_to / broadcast_to / average / matmul / linear
# =============================================================================
class Sum(Function):
def __init__(self, axis, keepdims):
self.axis = axis
self.keepdims = keepdims
def forward(self, x):
self.x_shape = x.shape
y = x.sum(axis=self.axis, keepdims=self.keepdims)
return y
def backward(self, gy):
gy = utils.reshape_sum_backward(gy, self.x_shape, self.axis,
self.keepdims)
gx = broadcast_to(gy, self.x_shape)
return gx
def sum(x, axis=None, keepdims=False):
return Sum(axis, keepdims)(x)
class SumTo(Function):
def __init__(self, shape):
self.shape = shape
def forward(self, x):
self.x_shape = x.shape
y = utils.sum_to(x, self.shape)
return y
def backward(self, gy):
gx = broadcast_to(gy, self.x_shape)
return gx
def sum_to(x, shape):
if x.shape == shape:
return as_variable(x)
return SumTo(shape)(x)
class BroadcastTo(Function):
def __init__(self, shape):
self.shape = shape
def forward(self, x):
self.x_shape = x.shape
xp = dezero.cuda.get_array_module(x)
y = xp.broadcast_to(x, self.shape)
return y
def backward(self, gy):
gx = sum_to(gy, self.x_shape)
return gx
def broadcast_to(x, shape):
if x.shape == shape:
return as_variable(x)
return BroadcastTo(shape)(x)
def average(x, axis=None, keepdims=False):
x = as_variable(x)
y = sum(x, axis, keepdims)
return y * (y.data.size / x.data.size)
mean = average
class MatMul(Function):
def forward(self, x, W):
y = x.dot(W)
return y
def backward(self, gy):
x, W = self.inputs
gx = matmul(gy, W.T)
gW = matmul(x.T, gy)
return gx, gW
def matmul(x, W):
return MatMul()(x, W)
class Linear(Function):
def forward(self, x, W, b):
y = x.dot(W)
if b is not None:
y += b
return y
def backward(self, gy):
x, W, b = self.inputs
gb = None if b.data is None else sum_to(gy, b.shape)
gx = matmul(gy, W.T)
gW = matmul(x.T, gy)
return gx, gW, gb
def linear(x, W, b=None):
return Linear()(x, W, b)
def linear_simple(x, W, b=None):
x, W = as_variable(x), as_variable(W)
t = matmul(x, W)
if b is None:
return t
y = t + b
t.data = None # Release t.data (ndarray) for memory efficiency
return y
# =============================================================================
# activation function: sigmoid / relu / softmax / log_softmax / leaky_relu
# =============================================================================
def sigmoid_simple(x):
x = as_variable(x)
y = 1 / (1 + exp(-x))
return y
class Sigmoid(Function):
def forward(self, x):
xp = cuda.get_array_module(x)
# y = 1 / (1 + xp.exp(-x))
y = xp.tanh(x * 0.5) * 0.5 + 0.5 # Better implementation
return y
def backward(self, gy):
y = self.outputs[0]()
gx = gy * y * (1 - y)
return gx
def sigmoid(x):
return Sigmoid()(x)
class ReLU(Function):
def forward(self, x):
xp = cuda.get_array_module(x)
y = xp.maximum(x, 0.0)
return y
def backward(self, gy):
x, = self.inputs
mask = x.data > 0
gx = gy * mask
return gx
def relu(x):
return ReLU()(x)
def softmax_simple(x, axis=1):
x = as_variable(x)
y = exp(x)
sum_y = sum(y, axis=axis, keepdims=True)
return y / sum_y
class Softmax(Function):
def __init__(self, axis=1):
self.axis = axis
def forward(self, x):
xp = cuda.get_array_module(x)
y = x - x.max(axis=self.axis, keepdims=True)
y = xp.exp(y)
y /= y.sum(axis=self.axis, keepdims=True)
return y
def backward(self, gy):
y = self.outputs[0]()
gx = y * gy
sumdx = gx.sum(axis=self.axis, keepdims=True)
gx -= y * sumdx
return gx
def softmax(x, axis=1):
return Softmax(axis)(x)
class LogSoftmax(Function):
def __init__(self, axis=1):
self.axis = axis
def forward(self, x):
log_z = utils.logsumexp(x, self.axis)
y = x - log_z
return y
def backward(self, gy):
y = self.outputs[0]()
gx = gy - exp(y) * gy.sum(axis=self.axis, keepdims=True)
return gx
def log_softmax(x, axis=1):
return LogSoftmax(axis)(x)
class LeakyReLU(Function):
def __init__(self, slope):
self.slope = slope
def forward(self, x):
y = x.copy()
y[x <= 0] *= self.slope
return y
def backward(self, gy):
x, = self.inputs
mask = (x.data > 0).astype(gy.dtype)
mask[mask <= 0] = self.slope
gx = gy * mask
return gx
def leaky_relu(x, slope=0.2):
return LeakyReLU(slope)(x)
# =============================================================================
# loss function: mean_squared_error / softmax_cross_entropy / sigmoid_cross_entropy / binary_cross_entropy
# =============================================================================
def mean_squared_error_simple(x0, x1):
x0, x1 = as_variable(x0), as_variable(x1)
diff = x0 - x1
y = sum(diff ** 2) / len(diff)
return y
class MeanSquaredError(Function):
def forward(self, x0, x1):
diff = x0 - x1
y = (diff ** 2).sum() / len(diff)
return y
def backward(self, gy):
x0, x1 = self.inputs
diff = x0 - x1
gy = broadcast_to(gy, diff.shape)
gx0 = gy * diff * (2. / len(diff))
gx1 = -gx0
return gx0, gx1
def mean_squared_error(x0, x1):
return MeanSquaredError()(x0, x1)
def softmax_cross_entropy_simple(x, t):
x, t = as_variable(x), as_variable(t)
N = x.shape[0]
p = softmax(x)
p = clip(p, 1e-15, 1.0) # To avoid log(0)
log_p = log(p)
tlog_p = log_p[np.arange(N), t.data]
y = -1 * sum(tlog_p) / N
return y
class SoftmaxCrossEntropy(Function):
def forward(self, x, t):
N = x.shape[0]
log_z = utils.logsumexp(x, axis=1)
log_p = x - log_z
log_p = log_p[np.arange(N), t.ravel()]
y = -log_p.sum() / np.float32(N)
return y
def backward(self, gy):
x, t = self.inputs
N, CLS_NUM = x.shape
gy *= 1/N
y = softmax(x)
# convert to one-hot
xp = cuda.get_array_module(t.data)
t_onehot = xp.eye(CLS_NUM, dtype=t.dtype)[t.data]
y = (y - t_onehot) * gy
return y
def softmax_cross_entropy(x, t):
return SoftmaxCrossEntropy()(x, t)
def sigmoid_cross_entropy(x, t):
if x.ndim != t.ndim:
t = t.reshape(*x.shape)
x, t = as_variable(x), as_variable(t)
N = len(x)
p = sigmoid(x)
p = clip(p, 1e-15, 1.0)
tlog_p = t * log(p) + (1 - t) * log(1 - p)
y = -1 * sum(tlog_p) / N
return y
def binary_cross_entropy(p, t):
if p.ndim != t.ndim:
t = t.reshape(*p.shape)
N = len(t)
p = clip(p, 1e-15, 0.999)
tlog_p = t * log(p) + (1 - t) * log(1 - p)
y = -1 * sum(tlog_p) / N
return y
# =============================================================================
# accuracy / dropout / batch_norm / embed_id
# =============================================================================
def accuracy(y, t):
"""
[WAR] This function is not differentiable.
"""
y, t = as_variable(y), as_variable(t)
pred = y.data.argmax(axis=1).reshape(t.shape)
result = (pred == t.data)
acc = result.mean()
return Variable(as_array(acc))
def dropout(x, dropout_ratio=0.5):
x = as_variable(x)
if dezero.Config.train:
xp = cuda.get_array_module(x)
mask = xp.random.rand(*x.shape) > dropout_ratio
scale = xp.array(1.0 - dropout_ratio).astype(x.dtype)
y = x * mask / scale
return y
else:
return x
class BatchNorm(Function):
def __init__(self, mean, var, decay, eps):
self.avg_mean = mean
self.avg_var = var
self.decay = decay
self.eps = eps
self.inv_std = None
def forward(self, x, gamma, beta):
assert x.ndim == 2 or x.ndim == 4
x_ndim = x.ndim
if x_ndim == 4:
N, C, H, W = x.shape
# (N, C, H, W) -> (N*H*W, C)
x = x.transpose(0, 2, 3, 1).reshape(-1, C)
xp = cuda.get_array_module(x)
if dezero.Config.train:
mean = x.mean(axis=0)
var = x.var(axis=0)
inv_std = 1 / xp.sqrt(var + self.eps)
xc = (x - mean) * inv_std
m = x.size // gamma.size
s = m - 1. if m - 1. > 1. else 1.
adjust = m / s # unbiased estimation
self.avg_mean *= self.decay
self.avg_mean += (1 - self.decay) * mean
self.avg_var *= self.decay
self.avg_var += (1 - self.decay) * adjust * var
self.inv_std = inv_std
else:
inv_std = 1 / xp.sqrt(self.avg_var + self.eps)
xc = (x - self.avg_mean) * inv_std
y = gamma * xc + beta
if x_ndim == 4:
# (N*H*W, C) -> (N, C, H, W)
y = y.reshape(N, H, W, C).transpose(0, 3, 1, 2)
return y
def backward(self, gy):
gy_ndim = gy.ndim
if gy_ndim == 4:
N, C, H, W = gy.shape
gy = gy.transpose(0, 2, 3, 1).reshape(-1, C)
x, gamma, beta = self.inputs
batch_size = len(gy)
if x.ndim == 4:
N, C, H, W = x.shape
x = x.transpose(0, 2, 3, 1).reshape(-1, C)
mean = x.sum(axis=0) / batch_size
xc = (x - mean) * self.inv_std
gbeta = sum(gy, axis=0)
ggamma = sum(xc * gy, axis=0)
gx = gy - gbeta / batch_size - xc * ggamma / batch_size
gx *= gamma * self.inv_std
if gy_ndim == 4:
gx = gx.reshape(N, H, W, C).transpose(0, 3, 1, 2)
return gx, ggamma, gbeta
def batch_nrom(x, gamma, beta, mean, var, decay=0.9, eps=2e-5):
return BatchNorm(mean, var, decay, eps)(x, gamma, beta)
def embed_id(x, W):
return W[x]
# =============================================================================
# max / min / clip
# =============================================================================
class Max(Function):
def __init__(self, axis=None, keepdims=False):
self.axis = axis
self.keepdims = keepdims
def forward(self, x):
y = x.max(axis=self.axis, keepdims=self.keepdims)
return y
def backward(self, gy):
x = self.inputs[0]
y = self.outputs[0]() # weakref
shape = utils.max_backward_shape(x, self.axis)
gy = reshape(gy, shape)
y = reshape(y, shape)
cond = (x.data == y.data)
gy = broadcast_to(gy, cond.shape)
return gy * cond
class Min(Max):
def forward(self, x):
y = x.min(axis=self.axis, keepdims=self.keepdims)
return y
def max(x, axis=None, keepdims=False):
return Max(axis, keepdims)(x)
def min(x, axis=None, keepdims=False):
return Min(axis, keepdims)(x)
class Clip(Function):
def __init__(self, x_min, x_max):
self.x_min = x_min
self.x_max = x_max
def forward(self, x):
xp = cuda.get_array_module(x)
y = xp.clip(x, self.x_min, self.x_max)
return y
def backward(self, gy):
x, = self.inputs
mask = (x.data >= self.x_min) * (x.data <= self.x_max)
gx = gy * mask
return gx
def clip(x, x_min, x_max):
return Clip(x_min, x_max)(x)
# =============================================================================
# conv2d / col2im / im2col / basic_math
# =============================================================================
from dezero.functions_conv import conv2d
from dezero.functions_conv import deconv2d
from dezero.functions_conv import conv2d_simple
from dezero.functions_conv import im2col
from dezero.functions_conv import col2im
from dezero.functions_conv import pooling_simple
from dezero.functions_conv import pooling
from dezero.functions_conv import average_pooling
from dezero.core import add
from dezero.core import sub
from dezero.core import rsub
from dezero.core import mul
from dezero.core import div
from dezero.core import neg
from dezero.core import pow