forked from TuftsBCB/Walker
-
Notifications
You must be signed in to change notification settings - Fork 0
/
walker.py
218 lines (173 loc) · 8.34 KB
/
walker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
"""
Implementation of tissue-specific graph walk with RWR
"""
import sys
import numpy as np
import networkx as nx
from sklearn.preprocessing import normalize
# convergence criterion - when vector L1 norm drops below 10^(-6)
# (this is the same as the original RWR paper)
CONV_THRESHOLD = 0.000001
class Walker:
""" Class for multi-graph walk to convergence, using matrix computation.
Random walk with restart (RWR) algorithm adapted from:
Kohler S, Bauer S, Horn D, Robinson PN. Walking the interactome for
prioritization of candidate disease genes. The American Journal of Human
Genetics. 2008 Apr 11;82(4):949-58.
Attributes:
-----------
og_matrix (np.array) : The column-normalized adjacency matrix
representing the original graph LCC, with no
nodes removed
tsg_matrix (np.array): The column-normalized adjacency matrix
representing the tissue-specific graph LCC, with
unexpressed nodes removed as specified by
low_list.
restart_prob (float) : The probability of restarting from the source
node for each step in run_path (i.e. r in the
original Kohler paper RWR formulation)
og_prob (float) : The probability of walking on the original graph
for nodes that are expressed (so, we walk on the
TSG with probability 1 - og_prob)
"""
def __init__(self, original_ppi, low_list, remove_nodes=[]):
self._build_matrices(original_ppi, low_list, remove_nodes)
def run_exp(self, source, restart_prob, og_prob, node_list=[]):
""" Run a multi-graph random walk experiment, and print results.
Parameters:
-----------
source (list): The source node indices (i.e. a list of Entrez
gene IDs)
restart_prob (float): As above
og_prob (float): As above
"""
self.restart_prob = restart_prob
self.og_prob = og_prob
# set up the starting probability vector
p_0 = self._set_up_p0(source)
diff_norm = 1
# this needs to be a deep copy, since we're reusing p_0 later
p_t = np.copy(p_0)
while (diff_norm > CONV_THRESHOLD):
# first, calculate p^(t + 1) from p^(t)
p_t_1 = self._calculate_next_p(p_t, p_0)
# calculate L1 norm of difference between p^(t + 1) and p^(t),
# for checking the convergence condition
diff_norm = np.linalg.norm(np.subtract(p_t_1, p_t), 1)
# then, set p^(t) = p^(t + 1), and loop again if necessary
# no deep copy necessary here, we're just renaming p
p_t = p_t_1
# now, generate and print a rank list from the final prob vector
if node_list:
for node, prob in self._generate_prob_list(p_t, node_list):
print '{}\t{:.10f}'.format(node, prob)
else:
for node, prob in self._generate_rank_list(p_t):
print '{}\t{:.10f}'.format(node, prob)
def _generate_prob_list(self, p_t, node_list):
gene_probs = dict(zip(self.OG.nodes(), p_t.tolist()))
for node in node_list:
yield node, gene_probs[node]
def _generate_rank_list(self, p_t):
""" Return a rank list, generated from the final probability vector.
Gene rank list is ordered from highest to lowest probability.
"""
gene_probs = zip(self.OG.nodes(), p_t.tolist())
# sort by probability (from largest to smallest), and generate a
# sorted list of Entrez IDs
for s in sorted(gene_probs, key=lambda x: x[1], reverse=True):
yield s[0], s[1]
def _calculate_next_p(self, p_t, p_0):
""" Calculate the next probability vector. """
if self.tsg_matrix is not None:
no_epsilon = np.squeeze(np.asarray(np.dot(self.tsg_matrix, p_t) *
(1 - self.og_prob)))
epsilon = np.squeeze(np.asarray(np.dot(self.og_matrix, p_t) *
(self.og_prob)))
no_restart = np.add(epsilon, no_epsilon) * (1 - self.restart_prob)
else:
epsilon = np.squeeze(np.asarray(np.dot(self.og_matrix, p_t)))
no_restart = epsilon * (1 - self.restart_prob)
restart = p_0 * self.restart_prob
return np.add(no_restart, restart)
def _set_up_p0(self, source):
""" Set up and return the 0th probability vector. """
p_0 = [0] * self.OG.number_of_nodes()
for source_id in source:
try:
# matrix columns are in the same order as nodes in original nx
# graph, so we can get the index of the source node from the OG
source_index = self.OG.nodes().index(source_id)
p_0[source_index] = 1 / float(len(source))
except ValueError:
sys.exit("Source node {} is not in original graph. Source: {}. Exiting.".format(
source_id, source))
return np.array(p_0)
def _build_matrices(self, original_ppi, low_list, remove_nodes):
""" Build column-normalized adjacency matrix for each graph.
NOTE: these are column-normalized adjacency matrices (not nx
graphs), used to compute each p-vector
"""
original_graph = self._build_og(original_ppi)
if remove_nodes:
# remove nodes, then get the largest connected component once
# the nodes are removed
original_graph.remove_nodes_from(remove_nodes)
original_graph = max(
nx.connected_component_subgraphs(original_graph),
key=len)
self.OG = original_graph
og_not_normalized = nx.to_numpy_matrix(original_graph)
self.og_matrix = self._normalize_cols(og_not_normalized)
if low_list:
tsg_not_normalized = self._tsg_matrix(original_graph,
og_not_normalized, low_list)
self.tsg_matrix = self._normalize_cols(tsg_not_normalized)
else:
self.tsg_matrix = None
def _tsg_matrix(self, original_graph, og_matrix, low_list):
tsg_matrix = np.copy(og_matrix)
# find nodes that aren't in the TSG
try:
list_fp = open(low_list, 'r')
except IOError:
sys.exit("Could not open file: {}".format(low_list))
index_list = []
for line in list_fp.readlines():
split_line = map(str.strip, line.split('\t'))
if split_line[1] == 'NA' and split_line[0] in original_graph.nodes():
index_list.append(original_graph.nodes().index(split_line[0]))
# then zero them out
for index in index_list:
tsg_matrix[index] = np.zeros(tsg_matrix.shape[0])
tsg_matrix[:, index] = np.zeros(tsg_matrix.shape[1])
list_fp.close()
return tsg_matrix
def _build_og(self, original_ppi):
""" Build the original graph, without any nodes removed. """
try:
graph_fp = open(original_ppi, 'r')
except IOError:
sys.exit("Could not open file: {}".format(original_ppi))
G = nx.Graph()
edge_list = []
# parse network input
for line in graph_fp.readlines():
split_line = line.rstrip().split('\t')
if len(split_line) > 3:
# assume input graph is in the form of HIPPIE network
edge_list.append((split_line[1], split_line[3],
float(split_line[4])))
elif len(split_line) < 3:
# assume input graph is a simple edgelist without weights
edge_list.append((split_line[0], split_line[1], float(1)))
else:
# assume input graph is a simple edgelist with weights
edge_list.append((split_line[0], split_line[1],
float(split_line[2])))
G.add_weighted_edges_from(edge_list)
graph_fp.close()
return G
def _normalize_cols(self, matrix):
""" Normalize the columns of the adjacency matrix """
return normalize(matrix, norm='l1', axis=0)