-
Notifications
You must be signed in to change notification settings - Fork 10
/
GNE.py
executable file
·235 lines (186 loc) · 10.9 KB
/
GNE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
'''
Tensorflow implementation of Gene Network Embedding framework (GNE)
@author: Kishan K C (kk3671@rit.edu)
'''
import pandas as pd
import random
import os
import numpy as np
import tensorflow as tf
from sklearn.base import BaseEstimator, TransformerMixin
import evaluation
class GNE(BaseEstimator, TransformerMixin):
def __init__(self, path, data, random_seed = 2018, parameters=None):
# bind params to class
# bind data to class
self.path = path
self.nodes = data.nodes
self.node_neighbors_map = data.node_neighbors_map
self.node_N = data.id_N
self.attr_M = data.attr_M
self.X_train = data.X
# bind model parameters to class
self.id_embedding_size = parameters['id_embedding_size']
self.attr_embedding_size = parameters['attr_embedding_size']
self.batch_size = parameters['batch_size']
self.alpha = parameters['alpha']
self.n_neg_samples = parameters['n_neg_samples']
self.epoch = parameters['epoch']
self.random_seed = random_seed
self.learning_rate = parameters['learning_rate']
self.representation_size = parameters['representation_size']
# init all variables in a tensorflow graph
self._init_graph()
print(parameters)
def _init_graph(self):
'''
Init a tensorflow Graph containing: input data, variables, model, loss, optimizer
'''
self.graph = tf.Graph()
with self.graph.as_default(): #, tf.device('/gpu:0'):
# Set graph level random seed
tf.set_random_seed(self.random_seed)
# Define a placeholder for input data
self.train_data_id = tf.placeholder(tf.int32, shape=[None]) # batch_size * 1
self.train_data_attr = tf.placeholder(tf.float32, shape=[None, self.attr_M]) # batch_size * attr_M
self.train_labels = tf.placeholder(tf.int32, shape=[None, 1]) # batch_size * 1
# Define placeholder for dropout
self.keep_prob = tf.placeholder(tf.float32)
# load initialzed variable.
self.weights = self._initialize_weights()
# Model.
# Look up embeddings for node_id. u = ENC(node_id)
self.id_embed = tf.nn.l2_normalize(tf.nn.embedding_lookup(self.weights['in_embeddings'], self.train_data_id) , 1)
# non linear transformation of expression data
self.attr_embed = tf.nn.l2_normalize(tf.nn.elu(tf.matmul(self.train_data_attr, self.weights['attr_embeddings'])),1 )
# Concatenation layer to concatenate structure and attribute
self.embed_layer = tf.concat([self.id_embed, self.alpha * self.attr_embed], 1)
# Non-linear transformation of concatenated representation
self.representation_layer_dropout = tf.nn.dropout(self.embed_layer, self.keep_prob)
self.representation_layer = tf.nn.tanh(tf.matmul(self.representation_layer_dropout, self.weights['hidden_weights']))
# Compute the loss, using a sample of the negative labels each time.
self.loss = tf.reduce_mean(tf.nn.sampled_softmax_loss(self.weights['out_embeddings'], self.weights['biases'], self.train_labels, self.representation_layer, self.n_neg_samples, self.node_N))
# Adam Optimizer.
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8).minimize(self.loss)
# init
init = tf.global_variables_initializer()
self.sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True))
self.sess.run(init)
def _initialize_weights(self):
all_weights = dict()
# Weights associated with structure embedding
all_weights['in_embeddings'] = tf.Variable(tf.random_uniform([self.node_N, self.id_embedding_size], -1.0, 1.0)) # id_N * id_dim
# Weights associated with attribute embedding
all_weights['attr_embeddings'] = tf.Variable(tf.random_normal([self.attr_M, int(self.attr_embedding_size)])) # attr_M * attr_dim
# Weights and biases associated with neighborhood embedding
all_weights['out_embeddings'] = tf.Variable(tf.random_normal([self.node_N, self.representation_size]))
all_weights['biases'] = tf.Variable(tf.zeros([self.node_N]))
# Weights associated with hidden layer transformation
all_weights['hidden_weights'] = tf.Variable(tf.random_normal([ self.id_embedding_size + self.attr_embedding_size, self.representation_size])) # attr_M *eattr_dim
return all_weights
def partial_fit(self, X):
# Create a dictionary to feed to tensorflow graph
feed_dict = {self.train_data_id: X['batch_data_id'],
self.train_data_attr: X['batch_data_attr'],
self.train_labels: X['batch_data_label'],
self.keep_prob : 0.5}
# run the graph to compute loss
loss, opt = self.sess.run((self.loss, self.optimizer), feed_dict=feed_dict)
return loss
def train(self, validation_edges, validation_labels): # fit a dataset
# Number of iterations executed
total_iterations = 0
# Best validation accuracy seen so far.
best_validation_accuracy = 0.0
# Iteration-number for last improvement to validation accuracy.
last_improvement = 0
# Stop optimization if no improvement found in this many iterations.
require_improvement = 2
print('Using structure and attribute embedding')
for epoch in range( self.epoch ):
# set the seed to randomize the permutation for each epoch
random.seed(epoch)
# random permutation of data
perm = np.random.permutation(len(self.X_train['data_id_list']))
self.X_train['data_id_list'] = self.X_train['data_id_list'][perm]
self.X_train['data_attr_list'] = self.X_train['data_attr_list'][perm]
self.X_train['data_label_list'] = self.X_train['data_label_list'][perm]
# compute the number of batches using batch_size
total_batch = int( len(self.X_train['data_id_list']) / self.batch_size)
# Loop over all batches
total_iterations += 1
avg_cost = 0.
for i in range(total_batch):
# generate a batch data
batch_xs = {}
# set the seed to randomize the permutation for each batch within each epoch
random.seed(epoch * i)
start_index = np.random.randint(0, len(self.X_train['data_id_list']) - self.batch_size)
batch_xs['batch_data_id'] = self.X_train['data_id_list'][start_index:(start_index + self.batch_size)]
batch_xs['batch_data_attr'] = self.X_train['data_attr_list'][start_index:(start_index + self.batch_size)]
batch_xs['batch_data_label'] = self.X_train['data_label_list'][start_index:(start_index + self.batch_size)]
# Train the model with batch of data and compute the loss
cost = self.partial_fit(batch_xs)
avg_cost += cost / total_batch
# Get embeddings from trained model
Embeddings_out = self.getEmbedding('out_embedding', self.nodes)
Embeddings_in = self.getEmbedding('embed_layer', self.nodes)
Embeddings = Embeddings_out + Embeddings_in
# link prediction test
## If you want the embeddings for related gene to be closer to each other
## adj_matrix_rec = -1*euclidean_distances(Embeddings, Embeddings)
####################################################################################
adj_matrix_rec = np.dot(Embeddings, Embeddings.T)
roc, pr = evaluation.evaluate_ROC_from_matrix(validation_edges, validation_labels, adj_matrix_rec)
attr_embeddings = self.getEmbedding('attribute', self.nodes)
# If validation accuracy is an improvement over best-known.
if roc > best_validation_accuracy:
# Update the best-known validation accuracy.
best_validation_accuracy = roc
# Set the iteration for the last improvement to current.
last_improvement = total_iterations
# Save all variables of the TensorFlow graph to file.
self.embedding_checkpoints(Embeddings, "save", "all")
self.embedding_checkpoints(attr_embeddings, "save", "attribute")
# A string to be printed below, shows improvement found.
improved_str = '*'
else:
# An empty string to be printed below.
# Shows that no improvement was found.
improved_str = ''
# Status-message for printing.
msg = "Epoch: {0:>6}, Train-Batch Loss: {1:.9f}, Validation AUC: {2:.9f} {3}"
print(msg.format(epoch + 1, avg_cost, roc, improved_str))
# Early stopping: If no improvement found in the required number of iterations, stop training the model
if total_iterations - last_improvement > require_improvement:
print("No improvement found in a while, stopping optimization.")
# Break out from the for-loop.
break
Embeddings = self.embedding_checkpoints(Embeddings, "restore", "all")
attr_embeddings = self.embedding_checkpoints(attr_embeddings, "restore", "attribute")
return Embeddings, attr_embeddings
def getEmbedding(self, type, nodes):
# get the embedding
if type == 'embed_layer':
feed_dict = {self.train_data_id: nodes['node_id'], self.train_data_attr: nodes['node_attr'],
self.keep_prob: 1}
Embedding = self.sess.run(self.representation_layer, feed_dict=feed_dict)
return Embedding
if type == 'out_embedding':
Embedding = self.sess.run(self.weights['out_embeddings'])
return Embedding
if type == 'attribute':
Embedding = self.sess.run(self.weights['attr_embeddings'])
return Embedding
if type == 'structure':
Embedding = self.sess.run(self.weights['in_embeddings'])
return Embedding
def embedding_checkpoints(self, Embeddings, type, embedding_type="all"):
file = self.path + "Embeddings_"+embedding_type+".txt"
if type == "save":
if os.path.isfile(file):
os.remove(file)
pd.DataFrame(Embeddings).to_csv(file, index=False, header=False)
if type == 'restore':
Embeddings = pd.read_csv(file, header=None)
return np.array(Embeddings)