-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathphoebe1_mcmc_show_results.py
executable file
·577 lines (449 loc) · 26.3 KB
/
phoebe1_mcmc_show_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
# -*- encoding: utf-8 -*-
#!/usr/bin/python
import numpy as np
import phoebeBackend as phb # so it doesn't get confused with the new phoebe
import pickle
import sys
import scipy.stats as st
#from phoebe.atmospheres.roche import binary_potential
#import phoebe.algorithms.marching as marching
#from phoebe.utils.coordinates import cart2spher_coord, spher2cart_coord
import matplotlib
matplotlib.use('Agg')
#matplotlib.style.use('classic')
import matplotlib.pyplot as plt
import os
import gc
import operator
#import triangle
import corner
from matplotlib.ticker import MultipleLocator, FormatStrFormatter
import math
from scipy.interpolate import interp1d
from mpl_toolkits.axes_grid1.inset_locator import inset_axes
from astropy.coordinates import SkyCoord as FK5
from astropy import units as unit
from astropy.time import Time
from astropy import coordinates as coord
from astropy import stats
import commands
hjd0_T = {'V1898 Cyg': [2448501.213, 1.513123, '21 03 54', '46 19 50', 'V 7.82', '3x20min', 'P = 1.51', 'Eclipsing binary of Algol type'],
'V394 Vul': [245287.4124, 3.080305, '19 49 03', '20 25 31', 'V 8.73', '3x30min', 'P = 3.08', 'Eclipsing binary'],
'V417 Aur': [2448500.5262, 1.86553, '05 13 32', '35 39 11', 'V 7.90', '3x20min', 'P = 1.86', 'Eclipsing binary of Algol type'],
'V455 Aur': [2453383.2815, 3.14578, '06 28 55', '52 07 33', 'V 7.90', '3x20min', 'P = 27.0', 'Eclipsing binary of Algol type'],
'V994 Her': [2452436.4213, 2.0832179, '18 27 46', '24 41 51', 'V 7.14', '3x20min', 'P = 2.08', 'Eclipsing binary of Algol type'],
'CI CVn': [2452723.4853, 0.8158745, '13 13 33', '47 47 52', 'V 9.37', '3x30min', 'P = 0.81', 'Eclipsing binary of beta Lyr type'],
'CN Lyn': [2453318.6229, 1.95551, '08 01 37', '38 44 57', 'V 9.06', '3x30min', 'P = 1.95', 'Eclipsing binary of Algol type'],
'DT Cam': [2453405.3478, 7.0662638, '05 13 58', '56 30 29', 'V 8.13', '3x30min', 'P = 7.06', 'Eclipsing binary'],
'DV Cam': [2453373.4808, 6.6785, '05 19 27.9', '58 07 02.5', 'V 6.119', '3x20min', 'P = 6.67', 'Eclipsing binary of Algol type'],
'EQ Boo': [2453410.6352, 5.435355, '14 52 26', '17 57 23', 'V 8.80', '3x30min', 'P = 5.43', 'Eclipsing binary of Algol type'],
'GK Dra': [2452000.498, 9.97415, '16 45 41', '68 15 30', 'V 8.77', '3x30min', 'P = 9.97', 'Eclipsing binary of Algol type'],
'GZ Dra': [2453171.4359, 2.253363, '18 12 41', '54 46 07', 'V 9.49', '3x30min', 'P = 2.25', 'Eclipsing binary'],
'TV LMi': [2452655.3776, 8.47799, '09 55 46', '37 11 42', 'V 8.99', '3x30min', 'P = 8.47', 'Eclipsing binary of Algol type'],
#'TYC 5227-1023-1': [2457003.325, 4.306193, '22 00 52.6', '-03 42 12.4', 'V 11.86', '3x30min'],
#'V1695 Aql': [2457634.7053, 0.4128296, '19 38 22.2982', '-03 32 37.142', 'V 11.0', '1x30min'],
}
comp_pars = ["phoebe_mass1", "phoebe_mass2", "phoebe_radius1", "phoebe_radius2", "phoebe_mbol1", "phoebe_mbol2", "phoebe_logg1", "phoebe_logg2", 'distance']
SHOW_PLOT = False
#https://arxiv.org/pdf/1510.07674.pdf, IAU 2015 Resolution B3 on Recommended Nominal Conversion Constants for Selected Solar and Planetary Properties
RSun = 6.957*(10**8)
Lsun = 3.828*(10**26)
Tsun = 5772
GMsun = 1.3271244*(10**20)
G = 6.67408*(10**-11) # 2014 CODATA
# http://maia.usno.navy.mil/NSFA/NSFA_cbe.html
c = 299792.458
SIGMA = 5.670367*(10**-8) # 2014 CODATA
# Using the IAU 2012 Resolution B2 definition of the astronomical unit, the parsec corresponds to 3.085 677 581
KPCTOM = 3.085677581*(10**19)
day = 86400.0
def show_results(star, phoebe_file, prefix, adjpars, labels, burn_cut, lnprob_lim_low, nwalkers=64, niter=1000,
teff1=np.nan, dteff1=np.nan, dparsec=np.nan, ddparsec=np.nan):
phb.init()
phb.configure()
phb.open('/home/klemen/phoebe1/'+star+'/'+phoebe_file)
# REVIEW MCMC RESULTS
# ===================
if True:
# burn_cut = -700
burn_cut_up = -1
lnprob_lim_high = 0
# lnprob_lim_low = -2e9
#samples = np.loadtxt(phoebe_file+prefix+'.chain.mcmc')
samples_all = np.genfromtxt(phoebe_file + prefix + '.mcmc')
samples = samples_all[:, 1:]
samples_by_walkers = []
#print samples_all
if True:
# show walkers convergence
for i in range(nwalkers):
#print len(samples_all[i::nwalkers][:, -1]), np.sum(np.isfinite(samples_all[i::nwalkers][:, -1])), samples_all[i::nwalkers][:, -1]
plt.plot(samples_all[i::nwalkers][:, -1], lw=0.5)
if SHOW_PLOT:
plt.show()
plt.ylim((np.nanpercentile(samples_all[:, -1], 35), np.nanmax(samples_all[:, -1])))
plt.tight_layout()
plt.savefig("%s_walkers_mcmc.png" % (star), dpi=250)
plt.close()
labels.extend([i.replace('phoebe_', '') for i in comp_pars])
labels.extend(['r1', 'r2', 'K1', 'K2'])
print labels
for i in range(nwalkers):
walkers_burnin_cut = samples_all[i::nwalkers][burn_cut:burn_cut_up, -1]
#print walkers_burnin_cut
print i, len(walkers_burnin_cut), len(walkers_burnin_cut[(walkers_burnin_cut > lnprob_lim_low) & (walkers_burnin_cut < lnprob_lim_high)])
print np.nanmin(walkers_burnin_cut), np.nanmax(walkers_burnin_cut), np.sum(walkers_burnin_cut > lnprob_lim_low), np.sum(walkers_burnin_cut < lnprob_lim_high)
if len(walkers_burnin_cut) == len(walkers_burnin_cut[(walkers_burnin_cut > lnprob_lim_low) & (walkers_burnin_cut < lnprob_lim_high)]):
samples_by_walkers.append(samples[i::nwalkers][burn_cut:burn_cut_up])
#plt.plot(samples_all[i::64][:, -1])
#if SHOW_PLOT:
# plt.show()
best_result_by_lnprob = sorted(samples_all, key = operator.itemgetter(-1), reverse = True)[0]
print np.array(samples_by_walkers).shape
samples = np.concatenate(np.transpose(np.array(samples_by_walkers), (1,0,2)))
#print samples[:5]
#samples = np.array(sorted(samples, key = operator.itemgetter(-1), reverse = True))[:, 0:len(labels)]
samples = samples[:, 0:len(labels)]
#print samples[:5]
averages = zip(np.average(samples, axis=0), np.std(samples, axis=0))
averages = np.array(averages)
percentiles_posterior = map(lambda v: (v[1], v[2]-v[1], v[1]-v[0]), zip(*np.percentile(samples, [16, 50, 84], axis=0)))
#percentiles = averages
# print results
print "\nMCMC RESULTS:\n"
mcmc_results = {}
for x in zip(labels, percentiles_posterior):
mcmc_results[x[0]] = x[1]
print x[0], x[1]
# save last positions of all walkers for LC plotting
last_walkers_values = []
for j in range(nwalkers):
percentiles = []
#print j, samples[-j][10]
for i in samples[-j]:
percentiles.append((i, 0, 0))
last_walkers_values.append(percentiles)
# show values from phoebe parameter file
print "\nVALUES FROM PHOEBE PAR FILE:\n"
for par in [["phoebe_hla", 0], ["phoebe_hla", 1], ["phoebe_cla", 0], ["phoebe_cla", 1], ["phoebe_plum1", 0], ["phoebe_plum2", 0], "phoebe_mass1", "phoebe_mass2", "phoebe_radius1", "phoebe_radius2", "phoebe_mbol1", "phoebe_mbol2", "phoebe_logg1", "phoebe_logg2", "phoebe_sbr1", "phoebe_sbr2", "phoebe_vol1", "phoebe_vol2"]:
if len(par) == 2:
#print par[0], par[1]
print "%s %s: %s" %(par[0], par[1], phb.getpar(par[0], par[1]))
else:
print "%s: %s" %(par, phb.getpar(par))
# COMPUTE NON-FITTED PARAMETERS
# =============================
if True:
for i, j in enumerate(adjpars):
phb.setpar(j[0], float(percentiles_posterior[i][0]), j[1])
# Using these new values, update LD coefficients:
phb.updateLD()
chi2lc1 = -0.5*phb.cfval('lc', 0, False)
chi2lc2 = -0.5*phb.cfval('lc', 1, False)
chi2rv1 = -0.5*phb.cfval('rv', 0)
chi2rv2 = -0.5*phb.cfval('rv', 1)
lnp = (chi2lc1 + chi2lc2 + chi2rv1 + chi2rv2)
print lnp, chi2lc1, chi2lc2, chi2rv1, chi2rv2
phb.save('phoebe_solution6')
# show computed values after update
print "\nCOMPUTED VALUES:\n"
for par in ["phoebe_mass1", "phoebe_mass2", "phoebe_radius1", "phoebe_radius2", "phoebe_mbol1", "phoebe_mbol2", "phoebe_logg1", "phoebe_logg2", "phoebe_sbr1", "phoebe_sbr2", "phoebe_vol1", "phoebe_vol2"]:
if len(par) == 2:
print "%s %s: %s" %(par[0], par[1], phb.getpar(par[0], par[1]))
else:
print "%s: %s" %(par, phb.getpar(par))
# PRINT MCMC POSTERIORS
# =====================
if True:
# http://corner.readthedocs.io/en/latest/api.html
nicer_labels = {'P':'$P$', 'hjd0':'$T_0$', 'K1':'$K_1$', 'K2':'$K_2$', 'a':'$a$', 'q':'$q$', 'i':'$i$', 'e':'$e$', 'teff2':'$T_2$', 'omega1':'$\Omega_1$', 'omega2':'$\Omega_2$', 'mass1':'$M_1$', 'mass2':'$M_2$', 'radius1':'$R_1$', 'radius2':'$R_2$', 'mbol1':'M$_{bol, 1}$', 'mbol2':'M$_{bol, 2}$', 'logg1':'log $g_1$', 'logg2':'log $g_2$', 'distance':'$d$', 'hla1':'hla1', 'hla2':'hla2', 'vga':'$V_{sys}$', 'per0':'per0'}
printed_labels = ['hjd0', 'P', 'a', 'q', 'i', 'e', 'teff2', 'omega1', 'omega2', 'hla1', 'hla2', 'vga', 'mass1', 'mass2', 'radius1', 'radius2', 'per0']
# print only available labels
printed_labels = [pl for pl in printed_labels if pl in labels]
print samples[0], labels, averages
print len(samples[0]), len(labels), len(averages)
new_samples = []
new_averages = []
for lab in printed_labels:
new_samples.append(samples[:, labels.index(lab)])
new_averages.append(averages[labels.index(lab)])
print lab, samples[:, labels.index(lab)]
new_samples = np.array(new_samples).T
new_averages = np.array(new_averages)
rang = []
for sam in new_samples.T:
if list(sam)[1:] == list(sam)[:-1]:
rang.append((sam[0]*0.8, sam[0]*1.2))
else:
rang.append((min(sam), max(sam)))
fig = corner.corner(new_samples, range=rang, quantiles=[0.16, 0.5, 0.84], labels=[nicer_labels[lab] for lab in printed_labels], label_kwargs={"fontsize": 18}, show_titles=True, title_fmt='.2f', title_kwargs={"fontsize": 13}, truths=new_averages[:, 0])#, labels=[r"$x$", r"$y$", r"$\log \alpha$", r"$\Gamma \, [\mathrm{parsec}]$"], truths=[0.0, 0.0, 0.0], quantiles=[0.16, 0.5, 0.84], show_titles=True, title_args={"fontsize": 12} labels_args={"fontsize": 40})
#plt.tight_layout()
#plt.tick_params(axis='y', which='both', direction='in')
#fig.subplots_adjust(hspace=0, wspace=0)
#fig = plt.figure(figsize=(10,15))
fig.set_size_inches(9*1.8, 11*1.8)
fig.subplots_adjust(left=0.09, top=0.95, bottom=0.1)
# fig.tight_layout()
if SHOW_PLOT:
plt.show()
fig.savefig("%s_triangle_mcmc.png" % (star), dpi=150)
#fig.savefig("triangle%s.pdf" % (prefix))
#fig.savefig("triangle"+prefix+".eps")
plt.close(fig)
# COMPUTE RV AND LC CURVE
# =======================
if True:
# LC from median of posterior distr.
'''
for i, j in enumerate(adjpars):
print j[0], float(percentiles_posterior[i][0]), j[1]
phb.setpar(j[0], float(percentiles_posterior[i][0]), j[1])
phb.updateLD()
chi2lc1 = phb.cfval('lc', 0, False) #/ 182.
chi2lc2 = phb.cfval('lc', 1, False) #/ 182.
#return chi2lc1 + chi2lc2
chi2rv1 = phb.cfval('rv', 0) #/ 8.
chi2rv2 = phb.cfval('rv', 1) #/ 8.
print chi2lc1, chi2lc2, chi2rv1, chi2rv2
phb.save('phoebe_solution6')
'''
# Compute and display a RV curve:
phs = tuple(np.linspace(-0.25, 1.25, 1.5/0.001 + 1))
rv1 = phb.rv1(phs, 0)
rv2 = phb.rv2(phs, 1)
phs = np.array(phs)
#times, rvs, sigmas = np.loadtxt('DT_Cam/spec/RV_primary.txt', unpack=True, dtype='float')
#times, rvs, sigmas = np.loadtxt('DT_Cam/spec/RV_secondary.txt', unpack=True, dtype='float')
# ADJUST LC phased by params of the solution
hjd0 = hjd0_T[star.replace('_', ' ')][0]#float(mcmc_results['hjd0'][0])
T = hjd0_T[star.replace('_', ' ')][1]#float(mcmc_results['P'][0])
print "hjd0, P: ", hjd0, T
RV1 = np.loadtxt('/home/klemen/phoebe1/%s/RV_primary_%s.txt'%(star, star), dtype='float')
RV2 = np.loadtxt('/home/klemen/phoebe1/%s/RV_secondary_%s.txt'%(star, star), dtype='float')
phot_phases1 = np.array([phase_from_MJD(ph, hjd0, T) for ph in RV1[:, 0]])
phot_phases2 = np.array([phase_from_MJD(ph, hjd0, T) for ph in RV2[:, 0]])
RV1[:, 0] = phot_phases1
RV2[:, 0] = phot_phases2
RV1 = np.concatenate( (np.array([RV1[:, 0], RV1[:, 1], RV1[:, 2]]).T, np.array([RV1[:, 0]-1, RV1[:, 1], RV1[:, 2]]).T, np.array([RV1[:, 0]+1, RV1[:, 1], RV1[:, 2]]).T) )
RV2 = np.concatenate( (np.array([RV2[:, 0], RV2[:, 1], RV2[:, 2]]).T, np.array([RV2[:, 0]-1, RV2[:, 1], RV2[:, 2]]).T, np.array([RV2[:, 0]+1, RV2[:, 1], RV2[:, 2]]).T) )
if True:
fig = plt.figure()
fig.set_size_inches(18,12)
plt.plot(phs, rv1, color='red')
plt.plot(phs, rv2, color='blue')
plt.errorbar(RV1[:, 0].astype(float), RV1[:, 1].astype(float), yerr=RV1[:, 2].astype(float), fmt='o', c='red', label='primary', markersize=8)
plt.errorbar(RV2[:, 0].astype(float), RV2[:, 1].astype(float), yerr=RV2[:, 2].astype(float), fmt='o', c='blue', label='secondary', markersize=8)
plt.legend(loc='lower left', fontsize=20)
plt.xlim([-0.1, 1.1])
plt.xlabel('phase', fontsize=20)
plt.ylabel('RV', fontsize=20)
ax = fig.gca()
ax.set_xticks(np.arange(0.0, 1.0, 0.25))
#ax.set_yticks(np.arange(-100., 100., 10))
plt.grid(ls='--', lw=0.3, alpha=0.2, c='black')
if SHOW_PLOT:
plt.show()
plt.tight_layout()
fig.savefig("%s_RV_mcmc.png" % (star), dpi=250)
#fig.savefig("RV%s.pdf" % (prefix))
plt.close(fig)
# Compute and display a LC curve:
#phs = tuple(np.linspace(-0.6, 0.6, 1.2/0.001 + 1))
phs = tuple(np.linspace(-0.25, 1.25, 1.5/0.001 + 1))
m0 = float(phb.getpar('phoebe_mnorm'))
f0 = 1.0
# assuming that the LC data were correctlly added to Phoebe software
lc1_post = phb.lc(phs, 0) # B band
lc2_post = phb.lc(phs, 1) # V band
phs = np.array(phs)
LC1 = np.loadtxt('/home/klemen/phoebe1/%s/Data_%s_B_new.txt'%(star, star), dtype='float')
LC2 = np.loadtxt('/home/klemen/phoebe1/%s/Data_%s_V_new.txt'%(star, star), dtype='float')
phot_phases1 = np.array([phase_from_MJD(ph, hjd0, T) for ph in LC1[:, 0]])
phot_phases2 = np.array([phase_from_MJD(ph, hjd0, T) for ph in LC2[:, 0]])
LC1[:, 0] = phot_phases1
LC2[:, 0] = phot_phases2
LC1_diff2 = phb.lc(tuple(LC1[:, 0]), 0)
LC2_diff2 = phb.lc(tuple(LC2[:, 0]), 1)
LC1[:, 0] = np.array([x < 0 and x+1 or x for x in LC1[:, 0]])
LC2[:, 0] = np.array([x < 0 and x+1 or x for x in LC2[:, 0]])
LC1 = np.concatenate( (np.array([LC1[:, 0], LC1[:, 1]]).T,
np.array([LC1[:, 0]-1, LC1[:, 1]]).T,
np.array([LC1[:, 0]+1, LC1[:, 1]]).T) )
LC2 = np.concatenate( (np.array([LC2[:, 0], LC2[:, 1]]).T, np.array([LC2[:, 0]-1, LC2[:, 1]]).T, np.array([LC2[:, 0]+1, LC2[:, 1]]).T) )
LC1_diff = phb.lc(tuple(LC1[:, 0]), 0)
LC2_diff = phb.lc(tuple(LC2[:, 0]), 1)
if lc1_post[0] < 5:
print "flux, not magnitudes"
lc1_post = tuple(-2.5 * np.log10(np.array(lc1_post)/f0) + m0)
lc2_post = tuple(-2.5 * np.log10(np.array(lc2_post)/f0) + m0)
LC1_diff = -2.5 * np.log10(np.array(LC1_diff)/f0) + m0
LC2_diff = -2.5 * np.log10(np.array(LC2_diff)/f0) + m0
LC1_diff2 = -2.5 * np.log10(np.array(LC1_diff2)/f0) + m0
LC2_diff2 = -2.5 * np.log10(np.array(LC2_diff2)/f0) + m0
LC1_diff = LC1[:, 1] - LC1_diff
LC2_diff = LC2[:, 1] - LC2_diff
if True:
fig = plt.figure()
fig.set_size_inches(18,12)
plt.plot(phs, lc1_post, color='blue')
plt.plot(phs, lc2_post, color='green')
plt.scatter(LC1[:, 0].astype(float), LC1[:, 1].astype(float), s=1, c='blue', label='Johnson B')
plt.scatter(LC2[:, 0].astype(float), LC2[:, 1].astype(float), s=1, c='green', label='Johnson V')
plt.legend(loc='lower center', fontsize=20)
plt.xlim([-0.1, 1.1])
plt.xlabel('phase', fontsize=20)
plt.ylabel('mag', fontsize=20)
ax = fig.gca()
ax.set_xticks(np.arange(0.0, 1.0, 0.25))
plt.gca().invert_yaxis()
#ax.set_yticks(np.arange(-100., 100., 10))
plt.grid(ls='--', lw=0.3, alpha=0.2, c='black')
if SHOW_PLOT:
plt.show()
plt.tight_layout()
fig.savefig("%s_LC_mcmc.png" % (star), dpi=250)
#fig.savefig("LC%s.pdf" % (prefix))
plt.close(fig)
# PRINT PARAMETERS FOR PDF
# ========================
if True:
mcmc_results['teff1'] = (teff1,) #(teff1, dteff1)
#mcmc_results['dist'] = (dparsec, ddparsec)
pars = ['P', 'hjd0', 'K1', 'K2', 'a', 'vga', 'q', 'i', 'e', 'teff2', 'omega1', 'omega2', 'r1', 'r2', 'radius1', 'radius2', 'mass1', 'mass2', 'mbol1', 'mbol2', 'logg1', 'logg2', 'distance']
# use only fitted labels
i_use = [ip for ip, pl in enumerate(pars) if pl in labels]
pars = np.array(pars)[i_use]
name = np.array(['\sl P', '\sl T$_{\\rm 0}$', '\sl $K_1$', '\sl $K_2$', '\sl a', '\sl V$_{\gamma }$', '\sl q = $\\frac{m_2}{m_1}$', '\sl i', '\sl e', '\sl T$_{2}$', '\sl $\Omega_{1}$', '\sl $\Omega_{2}$', '$r_1$', '$r_2$', '$R_1$', '$R_2$', '$M_1$', '$M_2$', 'M$_{bol, 1}$', 'M$_{bol, 2}$', 'log $g_1$', 'log $g_2$', 'distance'])[i_use]
desc = np.array(['(d)', '(HJD)', '(km sec$^{-1}$)', '(km sec$^{-1}$)', '(R$_{\odot }$)', '(km sec$^{-1}$)', '(deg)', '', '', '(K)', '', '', '($R_1$/{\sl a})', '($R_2$/{\sl a})', '(R$_\odot$)', '(R$_\odot$)', '(M$_\odot$)', '(M$_\odot$)', '', '', '(cgs)', '(cgs)', '(pc)'])[i_use]
formatt = np.array(['%.6f', '%.4f', '%.1f', '%.1f', '%.4f', '%.2f', '%.4f', '%.2f', '%.5f', '%.0f', '%.2f', '%.2f', '%.4f', '%.4f', '%.3f', '%.3f', '%.4f', '%.4f', '%.2f', '%.2f', '%.2f', '%.2f', '%.0f'])[i_use]
print pars
print i_use
if False:
#### SHOULDN'T HAVE TO DO THAT, SOMETHING WRONG IN .mcmc FILE FOR intermediate COMPUTED PARAMETERS ####
#### FIX FIX FIX ####
mcmc_results['mass1'] = (phb.getpar('phoebe_mass1'), 0)
mcmc_results['mass2'] = (phb.getpar('phoebe_mass2'), 0)
mcmc_results['mbol1'] = (phb.getpar('phoebe_mbol1'), 0)
mcmc_results['mbol2'] = (phb.getpar('phoebe_mbol2'), 0)
mcmc_results['radius1'] = (phb.getpar('phoebe_radius1'), 0)
mcmc_results['radius2'] = (phb.getpar('phoebe_radius2'), 0)
mcmc_results['logg1'] = (phb.getpar('phoebe_logg1'), 0)
mcmc_results['logg2'] = (phb.getpar('phoebe_logg2'), 0)
sma = mcmc_results['a'][0]
q = mcmc_results['q'][0]
P = mcmc_results['P'][0]
inc = mcmc_results['i'][0]
ecc = mcmc_results['e'][0]
sma2 = sma / (1.+q)
sma1 = sma - sma2
mcmc_results['K1'] = ((2*np.pi*sma1*RSun*np.sin(inc*np.pi/180.)/P/day/np.sqrt(1.-ecc*ecc)), 0)
mcmc_results['K2'] = ((2*np.pi*sma2*RSun*np.sin(inc*np.pi/180.)/P/day/np.sqrt(1.-ecc*ecc)), 0)
mcmc_results['r1'] = mcmc_results['radius1'] / sma
mcmc_results['r2'] = mcmc_results['radius2'] / sma
with open('parameters_' + phoebe_file + prefix + '.tex', 'w') as f:
f.write("\documentclass[10pt]{article} \n")
f.write("\pagestyle{empty} \n")
f.write("\\begin{document} \n")
f.write("\\begin{table} \n")
f.write("\\begin{tabular}{l l r l } \n")
f.write("\hline \n")
f.write("&&&\\\\ \n")
for i, par in enumerate(pars):
if len(mcmc_results[par]) == 3:
if par == 'teff2':
f.write(('{%s} & %s & '+formatt[i]+' & $^{+'+formatt[i]+'}_{-'+formatt[i]+'}$ \\\\[1.3ex] \n') % ('\sl T$_{1}$ - T$_{2}$', '(K)', mcmc_results['teff1'][0] - mcmc_results[par][0], mcmc_results[par][1], mcmc_results[par][2]))
else:
f.write(('{%s} & %s & '+formatt[i]+' & $^{+'+formatt[i]+'}_{-'+formatt[i]+'}$ \\\\[1.3ex] \n') % (name[i], desc[i], mcmc_results[par][0], mcmc_results[par][1], mcmc_results[par][2]))
else:
f.write(('{%s} & %s & '+formatt[i]+' & $\pm$ '+formatt[i]+'\\\\[1.3ex] \n') % (name[i], desc[i], mcmc_results[par][0], mcmc_results[par][1]))
f.write("&&&\\\\ \n")
f.write("\hline \n")
f.write("\end{tabular} \n")
f.write("\end{table} \n")
f.write("\end{document} \n")
os.system('pdflatex ' + 'parameters_' + phoebe_file + prefix + '.tex')
print "PDF created"
print "Accuracies: M1: %s, M2: %s, R1: %s, R2: %s" % (max(abs(mcmc_results['mass1'][1]), abs(mcmc_results['mass1'][2])) / mcmc_results['mass1'][0], max(abs(mcmc_results['mass2'][1]), abs(mcmc_results['mass2'][2])) / mcmc_results['mass2'][0], max(abs(mcmc_results['radius1'][1]), abs(mcmc_results['radius1'][2])) / mcmc_results['radius1'][0], max(abs(mcmc_results['radius2'][1]), abs(mcmc_results['radius2'][2])) / mcmc_results['radius2'][0])
if 'P' in mcmc_results:
print "rotational velocities: 1 %s, 2 %s" % (RSun*2*math.pi*mcmc_results['radius1'][0] / (mcmc_results['P'][0]*24*3600), RSun*2*math.pi*mcmc_results['radius2'][0] / (mcmc_results['P'][0]*24*3600))
return
def add_subplot_axes(fig, ax,rect,axisbg='w'):
#fig = plt.gcf()
box = ax.get_position()
width = box.width
height = box.height
inax_position = ax.transAxes.transform(rect[0:2])
transFigure = fig.transFigure.inverted()
infig_position = transFigure.transform(inax_position)
x = infig_position[0]
y = infig_position[1]
width *= rect[2]
height *= rect[3] # <= Typo was here
subax = fig.add_axes([x,y,width,height],axisbg=axisbg)
x_labelsize = subax.get_xticklabels()[0].get_size()
y_labelsize = subax.get_yticklabels()[0].get_size()
x_labelsize *= rect[2]**0.5
y_labelsize *= rect[3]**0.5
subax.xaxis.set_tick_params(labelsize=x_labelsize)
subax.yaxis.set_tick_params(labelsize=y_labelsize)
return subax
def phase_from_MJD(hjd, hjd0, T, short=False):
if short:
return float("%.4f" % ((hjd-hjd0)/T - int((hjd-hjd0)/T)))
else:
return (hjd-hjd0)/T - int((hjd-hjd0)/T)
if __name__ == '__main__':
# BASIC SETUP:
what_to_fit = [0, # origin of HJD time
0, # orbital period
1, # semi-major axis
1, # mass ratio
1, # inclination
1, # eccentricity
1, # secondary temperature
1, # radius proxy
1, # radius proxy
1, # first band luminosities
1, # secondary band luminosities
0, # third light
0, # third light
0, # primary extinction
0, # seconda00ry extinction
0, # primary metallicity
0, # secondary metallicity
1, # centre of mass velocity
1, # argument of periastron
]
# set, nwalkers, niters
in_args = sys.argv
if len(in_args) > 1:
set = str(in_args[1])
else:
set = 'd'
if len(in_args) > 2:
walkers = int(in_args[2])
else:
walkers = 128
if len(in_args) > 3:
n_last_use = int(in_args[3])
else:
n_last_use = 300
init_sets = {
'a': [walkers, 0, 'TV_LMi_partial_results', what_to_fit, 'TV_LMi', -n_last_use, -4e8, 5660],
'b': [walkers, 0, 'V394_Vul_partial_results', what_to_fit, 'V394_Vul', -n_last_use, -4e8, 8750],
'c': [walkers, 0, 'V455_Aur_partial_results', what_to_fit, 'V455_Aur', -n_last_use, -4e8, 7050],
'd': [walkers, 0, 'GK_Dra_partial_results', what_to_fit, 'GK_Dra', -n_last_use, -4e8, 6050],
'e': [walkers, 0, 'DT_Cam_partial_results', what_to_fit, 'DT_Cam', -n_last_use, -4e8, 9040],
}
adjpars = [['phoebe_hjd0', 0], ['phoebe_period', 0], ['phoebe_sma', 0], ['phoebe_rm', 0], ['phoebe_incl', 0], ['phoebe_ecc', 0], ['phoebe_teff2', 0], ['phoebe_pot1', 0], ['phoebe_pot2', 0], ['phoebe_hla', 0], ['phoebe_hla', 1], ['phoebe_el3', 0], ['phoebe_el3', 1], ['phoebe_extinction', 0], ['phoebe_extinction', 1], ['phoebe_met1', 0], ['phoebe_met2', 0], ['phoebe_vga', 0], ['phoebe_perr0', 0]]
labels = [r"hjd0", r"P", r"a", r"q", r"i", r"e", r"teff2", r"omega1", r"omega2", r"hla1", r"hla2", r"el31", r"el32", r"extinc1", r"extinc2", r"met1", r"met2", r"vga", r"per0"]
mask = np.array(init_sets[set][3]) == 1
adjpars = np.array(adjpars)[mask]
adjpars = [[x[0], int(x[1])] for x in adjpars]
labels = list(np.array(labels)[mask])
star = init_sets[set][4]
output_dir = 'Binaries_Phoebe1_MCMC_allparams'
os.chdir(output_dir)
os.chdir(star)
show_results(init_sets[set][4], init_sets[set][2], set, adjpars, labels, init_sets[set][5], init_sets[set][6], init_sets[set][0], init_sets[set][1],
teff1=init_sets[set][7])