Skip to content

Latest commit

 

History

History
110 lines (67 loc) · 3.19 KB

README.md

File metadata and controls

110 lines (67 loc) · 3.19 KB

AVCE_FER

Emotion-aware Multi-view Contrastive Learning for Facial Emotion Recognition (ECCV 2022)

Ubuntu PyThon PyTorch

Daeha Kim, Byung Cheol Song

CVIP Lab, Inha University

Real-time demo with pre-trained weights

Requirements

  • Python (>=3.7)
  • PyTorch (>=1.7.1)
  • pretrainedmodels (>=0.7.4)
  • cvxpy (>=1.1.15)
  • Wandb
  • Fabulous (terminal color toolkit)

To install all dependencies, do this.

pip install -r requirements.txt

News

[22.07.10]: Add source code and demo.

[22.07.07]: OPEN official pytorch version of AVCE_FER.

Datasets

  1. Download three public benchmarks for training and evaluation (I cannot upload datasets due to the copyright issue).

(For more details visit website)

  1. Follow preprocessing rules for each dataset by referring pytorch official custom dataset tutorial.

Pretrained weights

  • Check pretrained_weights folder.

    • Weights are trained on AFEW-VA dataset.

    • Weights for demo are trained on multiple VA database (please refer here)

Run

  1. Go to /src.

  2. Train AVCE.

  3. (Or) Execute run.sh

CUDA_VISIBLE_DEVICES=0 python main.py --freq 250 --model alexnet --online_tracker 1 --data_path <data_path> --save_path <save_path>
Arguments Description
freq Parameter saving frequency.
model CNN model for backbone. Choose from 'alexnet', and 'resnet18'.
online_tracker Wandb on/off.
data_path Path to load facial dataset.
save_path Path to save weights.

Real-time demo

  1. Go to /AVCE_demo.

  2. Run main.py.

  • Facial detection and AV FER functionalities are equipped.
  • Before that, you have to train and save Encoder.t7 and FC_layer.t7.

Citation

@inproceedings{kim2022emotion,
	title={Emotion-aware Multi-view Contrastive Learning for Facial Emotion Recognition},
	author={Kim, Daeha and Song, Byung Cheol},
	booktitle={European Conference on Computer Vision},
	pages={178--195},
	year={2022},
	organization={Springer}

}

Contact

If you have any questions, feel free to contact me at kdhht5022@gmail.com.