forked from Moodstocks/stnbhwd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBilinearSamplerBHWD.cu
419 lines (344 loc) · 21.8 KB
/
BilinearSamplerBHWD.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
#include "utils.h"
// Bilinear sampling is done in BHWD (coalescing is not obvious in BDHW)
// we assume BHWD format in inputImages
// we assume BHW(YX) format on grids
__device__ void getTopLeft(float x, int width, int& point, float& weight)
{
/* for interpolation :
stores in point and weight :
- the x-coordinate of the pixel on the left (or y-coordinate of the upper pixel)
- the weight for interpolating
*/
float xcoord = (x + 1) * (width - 1) / 2;
point = floor(xcoord);
weight = 1 - (xcoord - point);
}
__device__ bool between(int value, int lowerBound, int upperBound)
{
return (value >= lowerBound && value <= upperBound);
}
__device__ void sumReduceShMem(volatile float s[])
{
/* obviously only works for 32 elements */
/* sums up a shared memory array of 32 elements, stores it in s[0] */
/* whole warp can then read first element (broadcasting) */
if(threadIdx.x<16) { s[threadIdx.x] = s[threadIdx.x] + s[threadIdx.x+16]; }
if(threadIdx.x<8) { s[threadIdx.x] = s[threadIdx.x] + s[threadIdx.x+8]; }
if(threadIdx.x<4) { s[threadIdx.x] = s[threadIdx.x] + s[threadIdx.x+4]; }
if(threadIdx.x<2) { s[threadIdx.x] = s[threadIdx.x] + s[threadIdx.x+2]; }
if(threadIdx.x<1) { s[threadIdx.x] = s[threadIdx.x] + s[threadIdx.x+1]; }
}
__global__ void bilinearSamplingFromGrid(float* inputImages_data, int inputImages_strideBatch, int inputImages_strideChannels, int inputImages_strideHeight, int inputImages_strideWidth,
float* grids_data, int grids_strideBatch, int grids_strideYX, int grids_strideHeight, int grids_strideWidth,
float* output_data, int output_strideBatch, int output_strideChannels, int output_strideHeight, int output_strideWidth,
int inputImages_channels, int inputImages_height, int inputImages_width, int output_width)
{
// each (32,16) block 16 output pixels (for coalescing the grid read)
// x,y = coordinates (xOut = blockIdx.x*16+blockDim.y+threadIdx.y)
// z = batch index
// threadIdx.x : used for features (coalescing is trivial)
const int xOut = blockIdx.x*blockDim.y+threadIdx.y;
const bool withinImageBounds = xOut < output_width;
const bool withinGridBounds = blockIdx.x*blockDim.y + threadIdx.x / 2 < output_width;
const int yOut = blockIdx.y;
const int width = inputImages_width;
const int height = inputImages_height;
const int b = blockIdx.z;
float yf,xf;
__shared__ float gridData[32];
if (threadIdx.y==0 && withinGridBounds)
{
gridData[threadIdx.x] = grids_data[b*grids_strideBatch + yOut*grids_strideHeight + xOut*grids_strideWidth + threadIdx.x];
}
__syncthreads();
if(!withinImageBounds) return;
yf = gridData[threadIdx.y*2];
xf = gridData[threadIdx.y*2+1];
int yInTopLeft, xInTopLeft;
float yWeightTopLeft, xWeightTopLeft;
getTopLeft(xf, inputImages_width, xInTopLeft, xWeightTopLeft);
getTopLeft(yf, inputImages_height, yInTopLeft, yWeightTopLeft);
const int outAddress = output_strideBatch * b + output_strideHeight * yOut + output_strideWidth * xOut;
const int inTopLeftAddress = inputImages_strideBatch * b + inputImages_strideHeight * yInTopLeft + inputImages_strideWidth * xInTopLeft;
const int inTopRightAddress = inTopLeftAddress + inputImages_strideWidth;
const int inBottomLeftAddress = inTopLeftAddress + inputImages_strideHeight;
const int inBottomRightAddress = inBottomLeftAddress + inputImages_strideWidth;
float v=0;
float inTopLeft=0;
float inTopRight=0;
float inBottomLeft=0;
float inBottomRight=0;
bool topLeftIsIn = between(xInTopLeft, 0, width-1) && between(yInTopLeft, 0, height-1);
bool topRightIsIn = between(xInTopLeft+1, 0, width-1) && between(yInTopLeft, 0, height-1);
bool bottomLeftIsIn = between(xInTopLeft, 0, width-1) && between(yInTopLeft+1, 0, height-1);
bool bottomRightIsIn = between(xInTopLeft+1, 0, width-1) && between(yInTopLeft+1, 0, height-1);
// interpolation happens here
for(int t=threadIdx.x; t<inputImages_channels; t+= blockDim.x)
{
if(topLeftIsIn) inTopLeft = inputImages_data[inTopLeftAddress + t];
if(topRightIsIn) inTopRight = inputImages_data[inTopRightAddress + t];
if(bottomLeftIsIn) inBottomLeft = inputImages_data[inBottomLeftAddress + t];
if(bottomRightIsIn) inBottomRight = inputImages_data[inBottomRightAddress + t];
v = xWeightTopLeft * yWeightTopLeft * inTopLeft
+ (1 - xWeightTopLeft) * yWeightTopLeft * inTopRight
+ xWeightTopLeft * (1 - yWeightTopLeft) * inBottomLeft
+ (1 - xWeightTopLeft) * (1 - yWeightTopLeft) * inBottomRight;
output_data[outAddress + t] = v;
}
}
static int cunn_BilinearSamplerBHWD_updateOutput(lua_State *L)
{
THCState *state = getCutorchState(L);
THCudaTensor *inputImages = (THCudaTensor *)luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *grids = (THCudaTensor *)luaT_checkudata(L, 3, "torch.CudaTensor");
THCudaTensor *output = (THCudaTensor *)luaT_checkudata(L, 4, "torch.CudaTensor");
dim3 blocks((output->size[2]+15)/16, output->size[1], output->size[0]);
dim3 threads(32,16);
/* assume BHWD */
bilinearSamplingFromGrid <<< blocks, threads, 0, THCState_getCurrentStream(state) >>> (THCudaTensor_data(state, inputImages),
THCudaTensor_stride(state, inputImages, 0),
THCudaTensor_stride(state, inputImages, 3),
THCudaTensor_stride(state, inputImages, 1),
THCudaTensor_stride(state, inputImages, 2),
THCudaTensor_data(state, grids),
THCudaTensor_stride(state, grids, 0),
THCudaTensor_stride(state, grids, 3),
THCudaTensor_stride(state, grids, 1),
THCudaTensor_stride(state, grids, 2),
THCudaTensor_data(state, output),
THCudaTensor_stride(state, output, 0),
THCudaTensor_stride(state, output, 3),
THCudaTensor_stride(state, output, 1),
THCudaTensor_stride(state, output, 2),
THCudaTensor_size(state, inputImages, 3),
THCudaTensor_size(state, inputImages, 1),
THCudaTensor_size(state, inputImages, 2),
THCudaTensor_size(state, output, 2));
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in BilinearSampler.updateOutput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
return 1;
}
template<bool onlyGrid> __global__ void backwardBilinearSampling(float* inputImages_data, int inputImages_strideBatch, int inputImages_strideChannels, int inputImages_strideHeight, int inputImages_strideWidth,
float* gradInputImages_data, int gradInputImages_strideBatch, int gradInputImages_strideChannels, int gradInputImages_strideHeight, int gradInputImages_strideWidth,
float* grids_data, int grids_strideBatch, int grids_strideYX, int grids_strideHeight, int grids_strideWidth,
float* gradGrids_data, int gradGrids_strideBatch, int gradGrids_strideYX, int gradGrids_strideHeight, int gradGrids_strideWidth,
float* gradOutput_data, int gradOutput_strideBatch, int gradOutput_strideChannels, int gradOutput_strideHeight, int gradOutput_strideWidth,
int inputImages_channels, int inputImages_height, int inputImages_width, int gradOutput_width)
{
// each (32,16) block 16 output pixels (for coalescing the grid read)
// x,y = coordinates
// z = batch index
// threads : used for features
const int xOut = blockIdx.x*blockDim.y+threadIdx.y;
const bool withinImageBounds = xOut < gradOutput_width;
const bool withinGridBounds = blockIdx.x*blockDim.y + threadIdx.x / 2 < gradOutput_width;
const int yOut = blockIdx.y;
const int width = inputImages_width;
const int height = inputImages_height;
const int b = blockIdx.z;
float yf,xf;
__shared__ float gridData[32];
if (threadIdx.y==0 && withinGridBounds)
{
gridData[threadIdx.x] = grids_data[b*grids_strideBatch + yOut*grids_strideHeight + xOut*grids_strideWidth + threadIdx.x];
}
__syncthreads();
if(withinImageBounds)
{
yf = gridData[threadIdx.y*2];
xf = gridData[threadIdx.y*2+1];
int yInTopLeft, xInTopLeft;
float yWeightTopLeft, xWeightTopLeft;
getTopLeft(xf, inputImages_width, xInTopLeft, xWeightTopLeft);
getTopLeft(yf, inputImages_height, yInTopLeft, yWeightTopLeft);
const int inTopLeftAddress = inputImages_strideBatch * b + inputImages_strideHeight * yInTopLeft + inputImages_strideWidth * xInTopLeft;
const int inTopRightAddress = inTopLeftAddress + inputImages_strideWidth;
const int inBottomLeftAddress = inTopLeftAddress + inputImages_strideHeight;
const int inBottomRightAddress = inBottomLeftAddress + inputImages_strideWidth;
const int gradInputImagesTopLeftAddress = gradInputImages_strideBatch * b + gradInputImages_strideHeight * yInTopLeft + gradInputImages_strideWidth * xInTopLeft;
const int gradInputImagesTopRightAddress = gradInputImagesTopLeftAddress + gradInputImages_strideWidth;
const int gradInputImagesBottomLeftAddress = gradInputImagesTopLeftAddress + gradInputImages_strideHeight;
const int gradInputImagesBottomRightAddress = gradInputImagesBottomLeftAddress + gradInputImages_strideWidth;
const int gradOutputAddress = gradOutput_strideBatch * b + gradOutput_strideHeight * yOut + gradOutput_strideWidth * xOut;
float topLeftDotProduct = 0;
float topRightDotProduct = 0;
float bottomLeftDotProduct = 0;
float bottomRightDotProduct = 0;
bool topLeftIsIn = between(xInTopLeft, 0, width-1) && between(yInTopLeft, 0, height-1);
bool topRightIsIn = between(xInTopLeft+1, 0, width-1) && between(yInTopLeft, 0, height-1);
bool bottomLeftIsIn = between(xInTopLeft, 0, width-1) && between(yInTopLeft+1, 0, height-1);
bool bottomRightIsIn = between(xInTopLeft+1, 0, width-1) && between(yInTopLeft+1, 0, height-1);
/*
In that loop we accumulate
- gradients into the gradInputImages array with atomic adds
- we compute the dot product that we need for the grid gradient
*/
for(int t=threadIdx.x; t<inputImages_channels; t+= blockDim.x)
{
float gradOutValue = gradOutput_data[gradOutputAddress + t];
// bool between(int value, int lowerBound, int upperBound)
if(topLeftIsIn)
{
float inTopLeft = inputImages_data[inTopLeftAddress + t];
topLeftDotProduct += inTopLeft * gradOutValue;
if(!onlyGrid) atomicAdd(&gradInputImages_data[gradInputImagesTopLeftAddress + t], xWeightTopLeft * yWeightTopLeft * gradOutValue);
}
if(topRightIsIn)
{
float inTopRight = inputImages_data[inTopRightAddress + t];
topRightDotProduct += inTopRight * gradOutValue;
if(!onlyGrid) atomicAdd(&gradInputImages_data[gradInputImagesTopRightAddress + t], (1 - xWeightTopLeft) * yWeightTopLeft * gradOutValue);
}
if(bottomLeftIsIn)
{
float inBottomLeft = inputImages_data[inBottomLeftAddress + t];
bottomLeftDotProduct += inBottomLeft * gradOutValue;
if(!onlyGrid) atomicAdd(&gradInputImages_data[gradInputImagesBottomLeftAddress + t], xWeightTopLeft * (1 - yWeightTopLeft) * gradOutValue);
}
if(bottomRightIsIn)
{
float inBottomRight = inputImages_data[inBottomRightAddress + t];
bottomRightDotProduct += inBottomRight * gradOutValue;
if(!onlyGrid) atomicAdd(&gradInputImages_data[gradInputImagesBottomRightAddress + t], (1 - xWeightTopLeft) * (1 - yWeightTopLeft) * gradOutValue);
}
}
/*
Here we reduce the dot product and compute the grid gradient before writing it.
*/
/* could do shuffles and use no shmem at all but cuda arch is 2.0 */
__shared__ volatile float __shmem[16][32];
__shmem[threadIdx.y][threadIdx.x] = topLeftDotProduct;
sumReduceShMem(__shmem[threadIdx.y]);
topLeftDotProduct = __shmem[threadIdx.y][0];
__shmem[threadIdx.y][threadIdx.x] = topRightDotProduct;
sumReduceShMem(__shmem[threadIdx.y]);
topRightDotProduct = __shmem[threadIdx.y][0];
__shmem[threadIdx.y][threadIdx.x] = bottomLeftDotProduct;
sumReduceShMem(__shmem[threadIdx.y]);
bottomLeftDotProduct = __shmem[threadIdx.y][0];
__shmem[threadIdx.y][threadIdx.x] = bottomRightDotProduct;
sumReduceShMem(__shmem[threadIdx.y]);
bottomRightDotProduct = __shmem[threadIdx.y][0];
yf = - xWeightTopLeft * topLeftDotProduct + xWeightTopLeft * bottomLeftDotProduct - (1-xWeightTopLeft) * topRightDotProduct + (1-xWeightTopLeft) * bottomRightDotProduct;
xf = - yWeightTopLeft * topLeftDotProduct + yWeightTopLeft * topRightDotProduct - (1-yWeightTopLeft) * bottomLeftDotProduct + (1-yWeightTopLeft) * bottomRightDotProduct;
if(threadIdx.x==0)
{
gridData[threadIdx.y*2] = yf * (inputImages_height-1) / 2;
gridData[threadIdx.y*2+1] = xf * (inputImages_width-1) / 2;
}
}// must put a big if condition in order not to hang at __syncthreads()...
__syncthreads();
if(threadIdx.y==0 && withinGridBounds)
gradGrids_data[b*gradGrids_strideBatch + yOut*gradGrids_strideHeight + xOut*gradGrids_strideWidth + threadIdx.x] = gridData[threadIdx.x];
}
static int cunn_BilinearSamplerBHWD_updateGradInput(lua_State *L)
{
THCState *state = getCutorchState(L);
THCudaTensor *inputImages = (THCudaTensor *)luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *grids = (THCudaTensor *)luaT_checkudata(L, 3, "torch.CudaTensor");
THCudaTensor *gradInputImages = (THCudaTensor *)luaT_checkudata(L, 4, "torch.CudaTensor");
THCudaTensor *gradGrids = (THCudaTensor *)luaT_checkudata(L, 5, "torch.CudaTensor");
THCudaTensor *gradOutput = (THCudaTensor *)luaT_checkudata(L, 6, "torch.CudaTensor");
dim3 blocks((gradOutput->size[2]+15)/16, gradOutput->size[1], gradOutput->size[0]);
dim3 threads(32,16);
backwardBilinearSampling <false> <<< blocks, threads, 0, THCState_getCurrentStream(state) >>> (
THCudaTensor_data(state, inputImages),
THCudaTensor_stride(state, inputImages, 0),
THCudaTensor_stride(state, inputImages, 3),
THCudaTensor_stride(state, inputImages, 1),
THCudaTensor_stride(state, inputImages, 2),
THCudaTensor_data(state, gradInputImages),
THCudaTensor_stride(state, gradInputImages, 0),
THCudaTensor_stride(state, gradInputImages, 3),
THCudaTensor_stride(state, gradInputImages, 1),
THCudaTensor_stride(state, gradInputImages, 2),
THCudaTensor_data(state, grids),
THCudaTensor_stride(state, grids, 0),
THCudaTensor_stride(state, grids, 3),
THCudaTensor_stride(state, grids, 1),
THCudaTensor_stride(state, grids, 2),
THCudaTensor_data(state, gradGrids),
THCudaTensor_stride(state, gradGrids, 0),
THCudaTensor_stride(state, gradGrids, 3),
THCudaTensor_stride(state, gradGrids, 1),
THCudaTensor_stride(state, gradGrids, 2),
THCudaTensor_data(state, gradOutput),
THCudaTensor_stride(state, gradOutput, 0),
THCudaTensor_stride(state, gradOutput, 3),
THCudaTensor_stride(state, gradOutput, 1),
THCudaTensor_stride(state, gradOutput, 2),
THCudaTensor_size(state, inputImages, 3),
THCudaTensor_size(state, inputImages, 1),
THCudaTensor_size(state, inputImages, 2),
THCudaTensor_size(state, gradOutput, 2));
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in BilinearSampler.updateGradInput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
return 1;
}
static int cunn_BilinearSamplerBHWD_updateGradInputOnlyGrid(lua_State *L)
{
THCState *state = getCutorchState(L);
THCudaTensor *inputImages = (THCudaTensor *)luaT_checkudata(L, 2, "torch.CudaTensor");
THCudaTensor *grids = (THCudaTensor *)luaT_checkudata(L, 3, "torch.CudaTensor");
THCudaTensor *gradGrids = (THCudaTensor *)luaT_checkudata(L, 5, "torch.CudaTensor");
THCudaTensor *gradOutput = (THCudaTensor *)luaT_checkudata(L, 6, "torch.CudaTensor");
dim3 blocks((gradOutput->size[2]+15)/16, gradOutput->size[1], gradOutput->size[0]);
dim3 threads(32,16);
backwardBilinearSampling <true> <<< blocks, threads, 0, THCState_getCurrentStream(state) >>> (
THCudaTensor_data(state, inputImages),
THCudaTensor_stride(state, inputImages, 0),
THCudaTensor_stride(state, inputImages, 3),
THCudaTensor_stride(state, inputImages, 1),
THCudaTensor_stride(state, inputImages, 2),
0,
0,
0,
0,
0,
THCudaTensor_data(state, grids),
THCudaTensor_stride(state, grids, 0),
THCudaTensor_stride(state, grids, 3),
THCudaTensor_stride(state, grids, 1),
THCudaTensor_stride(state, grids, 2),
THCudaTensor_data(state, gradGrids),
THCudaTensor_stride(state, gradGrids, 0),
THCudaTensor_stride(state, gradGrids, 3),
THCudaTensor_stride(state, gradGrids, 1),
THCudaTensor_stride(state, gradGrids, 2),
THCudaTensor_data(state, gradOutput),
THCudaTensor_stride(state, gradOutput, 0),
THCudaTensor_stride(state, gradOutput, 3),
THCudaTensor_stride(state, gradOutput, 1),
THCudaTensor_stride(state, gradOutput, 2),
THCudaTensor_size(state, inputImages, 3),
THCudaTensor_size(state, inputImages, 1),
THCudaTensor_size(state, inputImages, 2),
THCudaTensor_size(state, gradOutput, 2));
// check for errors
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess) {
printf("error in BilinearSampler.updateGradInput: %s\n", cudaGetErrorString(err));
THError("aborting");
}
return 1;
}
static const struct luaL_Reg cunn_BilinearSamplerBHWD__ [] = {
{"BilinearSamplerBHWD_updateOutput", cunn_BilinearSamplerBHWD_updateOutput},
{"BilinearSamplerBHWD_updateGradInput", cunn_BilinearSamplerBHWD_updateGradInput},
{"BilinearSamplerBHWD_updateGradInputOnlyGrid", cunn_BilinearSamplerBHWD_updateGradInputOnlyGrid},
{NULL, NULL}
};
static void cunn_BilinearSamplerBHWD_init(lua_State *L)
{
luaT_pushmetatable(L, "torch.CudaTensor");
luaT_registeratname(L, cunn_BilinearSamplerBHWD__, "nn");
lua_pop(L,1);
}