-
Notifications
You must be signed in to change notification settings - Fork 265
/
Copy pathhuffman.py
81 lines (62 loc) · 2.1 KB
/
huffman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
# Huffman Tree
class Node:
def __init__(self, freq, symbol, left=None, right=None):
# Symbol frequency
self.freq = freq
# Symbol (character)
self.symbol = symbol
# Left node of the current node
self.left = left
# Right node of the current node
self.right = right
# Tree direction (0/1)
self.huff = ""
# Utility function to print
# Huffman codes for all symbols
# in the newly created Huffman tree
def print_nodes(node, val=""):
# Huffman code for the current node
new_val = val + str(node.huff)
# If the node does not belong to the
# leaf of the tree, then traverse inside
# until reaching the leaf
if node.left:
print_nodes(node.left, new_val)
if node.right:
print_nodes(node.right, new_val)
# If the node is at the leaf of the tree,
# then display the Huffman code
if not node.left and not node.right:
print(f"{node.symbol} -> {new_val}")
# Characters for the Huffman tree
chars = ["a", "b", "c", "d", "e", "f"]
# Frequencies of the characters
freq = [5, 9, 12, 13, 16, 45]
# List containing the unused nodes
nodes = []
if __name__ == "__main__":
# Converting characters and frequencies into
# Huffman tree nodes
for x in range(len(chars)):
nodes.append(Node(freq[x], chars[x]))
while len(nodes) > 1:
# Sort all nodes in ascending order
# based on their frequency
nodes = sorted(nodes, key=lambda x: x.freq)
# Select the two smallest nodes
left = nodes[0]
right = nodes[1]
# Assign a directional value to these nodes
# (left or right)
left.huff = 0
right.huff = 1
# Combine the two smallest nodes into a new parent node
# for them.
new_node = Node(left.freq + right.freq, left.symbol + right.symbol, left, right)
# Remove the two nodes and add the parent node
# as a new node on top of the others
nodes.remove(left)
nodes.remove(right)
nodes.append(new_node)
# Huffman Tree ready!
print_nodes(nodes[0])