-
Notifications
You must be signed in to change notification settings - Fork 4
Tutorial for waveform inversion using Kibrary
Note: This tutorial uses the "anselme" branch of the Kibrary project.
The data, property files (.properties), and scripts for this tutorial can be found in Kibrary/tutorial in the Kibrary project on Github, anselme branch.
- Check you have Java 8 installed on your system
- Download the executable JAR file of Kibrary, anselme branch
- Dowload the executable JAR file of TomoTool
- Download shbpcat, and psvbpcat
- Dowload tish, tipsv, shfp, and psvfp
- Download the seismic data (SAC files for event 031704A) here (or from the tutorial folder). Create the folder
tutorial_inversion
, and move the data folder031704A
you just downloaded totutorial_inversion
.tutorial_inversion
is the root folder for this tutorial.
- Install anaconda
- Create a conda environment
tuto
and install the following python packages by running
conda create -n tuto python=3.8
conda install -n tuto numpy matplotlib cartopy -y
Before running the python scripts in this tutorial, activate the tuto
environment using
conda activate tuto
In folder shbpcat
:
make
cd examples
cp -r AK135 AK135_TEST
mpirun -n 3 ../mpi-shbpcat < AK135_SH_5.inf
The run should complete in less than 1 minute. You can compare the results with pre-computed files:
head -n 5 XY01.340A_TA.PB...SH.spc.txt <(java io.github.kensuke1984.kibrary.quick.LookAtBPspc XY01.340A_TA.PB...SH.spc)
Note: There might be small differences, but they should be within ~10^-8 %
In folder psvbpcat
:
make
cd examples
cp -r AK135 AK135_TEST
mpirun -n 1 ../mpi-psvbpcat < AK135_PSV.inf
The run should complete in less than 2 minute. You can compare the results with pre-computed files:
head -n 5 XY01.340A_TA.PB...SH.spc.txt <(java io.github.kensuke1984.kibrary.quick.LookAtBPspc XY01.340A_TA.PB...SH.spc)
Note: There might be small differences, but they should be within ~10^-8 %
In folder tutorial_inversion
, run:
java io.github.kensuke1984.kibrary.Property
When prompted to, enter 19
(SyntheticDSMInformationFileMaker). Rename the output file to sdsmifm.properties
.
structureFile PREM
tlen 3276.8
np 512
Run
java io.github.kensuke1984.kibrary.Operation sdsmifm.properties
Rename the output folder to synthetic
cd synthetic/031704A
mpirun -n 8 mpi-tipsv < PREM_PSV
mpirun -n 8 mpi-tish < PREM_SH
java io.github.kensuke1984.kibrary.Property
When prompted to, enter 17
(SPC_SAC). Rename the output file to ss.properties
.
components Z T
psvPath .
shPath .
sourceTimeFunction 2
Run
java io.github.kensuke1984.kibrary.Operation ss.properties
Rename the output folder to sac
java io.github.kensuke1984.kibrary.Property
When prompted to, enter 4
(FilterDivider)
Rename the output file to fd.properties
components Z T
obsPath ..
synPath sac
lowFreq 0.005
highFreq 0.08
filter bandpass
np 4
backward false
Run
java io.github.kensuke1984.kibrary.Operation fd.properties
Rename the output folder to filtered
In folder filtered
, run
java io.github.kensuke1984.kibrary.timewindow.addons.MakeWindowPcPandScS
This will create 6 time windows binary files
-
timewindow_P.dat
used for computing static corrections for the PcP phase -
timewindow_S.dat
same, but for the ScS phase -
selectedTimewindow_PcP.dat
contains selected windows for the PcP phase -
selectedTimewindow_ScS.dat
same, but for the ScS phase -
timewindow_PcP.dat
andtimewindow_ScS.dat
contain windows before selection, and are not used in this tutorial
The time window are selected based on the following criteria:
- (zero-lag) correlation coefficient > -0.5
- variance < 2.5
- 0.4 < amplitude ratio < 2.5
- signal-to-noise ratio > 2
Currently, these criteria are hard-coded. Alternatively, you can use timewindow_PcP.dat
and timewindow_ScS.dat
together with io.github.kensuke1984.kibrary.selection.DataSelection
.
In folder filtered
, run
java io.github.kensuke1984.kibrary.Property
When prompted to, enter 6
(FujiStaticCorrection).
Rename the output file to fsc.properties
To compute static corrections for the ScS phase, edit fsc.properties
as follows:
components Z T
timewindowInformationPath timewindow_S.dat
convolute true
and run
java io.github.kensuke1984.kibrary.Operation fsc.properties
Rename the output file to staticCorrection_S.dat
.
Do the same for the PcP phase, replacing
timewindowInformationPath timewindow_P.dat
in the fsc.properties
file. Rename the output file to staticCorrection_P.dat
Corrections for the 3-D mantle above D" (the target region) are computed using TomoTool. To compute corrections for PcP-P differential travel times for the SEMUCB-WM1 model (French and Romanowicz, 2014), in folder filtered
, run
java raytheory.ComputeCorrection selectedTimewindow_PcP.dat semucb pcp
This creates a binary correction file mantleCorrection_P-PcP.dat
with the same structure as the one computed using FujiStaticCorrection
(section 5)
For ScS-S differential travel times, run
java raytheory.ComputeCorrection selectedTimewindow_ScS.dat semucb scs
This creates the file mantleCorrection_S-ScS.dat
.
In folder filtered
, run
java io.github.kensuke1984.kibrary.Property
When prompted to, enter 9
(ObservedSyntheticDatasetMaker).
Rename the output file to osdm.properties
components Z T
timeCorrection true
timewindowPath selectedTimewindow_ScS.dat
staticCorrectionPath staticCorrection_S.dat
correctMantle true
mantleCorrectionPath mantleCorrection_S-ScS.dat
Run
java io.github.kensuke1984.kibrary.Operation osdm.properties
Rename the output files to waveform_ScS.dat
and waveformID_ScS.dat
Do the same for the PcP phase, replacing
timewindowPath selectedTimewindow_ScS.dat
staticCorrectionPath staticCorrection_P.dat
mantleCorrectionPath mantleCorrection_P-PcP.dat
in osdm.properties
. Rename the output files to waveform_PcP.dat
and waveformID_PcP.dat
.
We first define the mesh of voxels (3-D pixels) to parametrize the target region in the inversion model. Download the files horizontalPoints_5deg.inf
and radii.inf
from the tutorial/INF_FILES folder into the tutorial_inversion
folder:
-
horizontalPoints_5deg.inf
: each line gives the latitude and longitude (in degree) of the center of a 5 by 5 degree pixel at the Earth's surface -
radii.inf
: each line gives the radius of the center of a depth layer
In tutorial_inversion
, create the files perturbationPoint_5deg.inf
and perturbationLayer.inf
by running:
while read p; do while read r; do echo "$p $r" >> perturbationPoint_5deg.inf; done < radii.inf; done < horizontalPoints_5deg.inf
awk '{print $1,"50"}' radii.inf > perturbationLayer.inf
To create the unknown parameter file (i.e. model parameters) for the mesh perturbationPoint_5deg.inf
for partial types MU and LAMBDA, run:
java io.github.kensuke1984.kibrary.inversion.addons.MakeUnknownParameterFile perturbationPoint_5deg.inf perturbationLayer.inf 5 MU LAMBDA
Rename the output file unknowns...
to unknowns_5deg.inf
In order to achieve higher accuracy, we define a new finer mesh (1.25 by 1.25 degree) on which the partials will be computed, and then later integrated to a coarser mesh (2.5 by 2.5 degree). To make the finer mesh, run
java io.github.kensuke1984.kibrary.inversion.addons.ResampleGrid unknowns_5deg.inf
This creates the files
- ```newHorizontalPoints_sampled2.inf``: horizontal point file with voxel size of 2.5 by 2.5 degree
-
newHorizontalPoints_sampled3.inf
: same, but with voxel size of 1.25 by 1.25 degree -
horizontalMapping_sampled2.inf
: file that maps voxels fromnewHorizontalPoints_sampled2.inf```` to
horizontalPoints_5deg.inf``` -
horizontalMapping_sampled3.inf
: file that maps voxels fromnewHorizontalPoints_sampled3.inf```` to
horizontalPoints_5deg.inf``` -
horizontalMapping_sampled3.inf
: file that maps voxels fromnewHorizontalPoints_sampled3.inf```` to
newHorizontalPoints_sampled2.inf````
Creates the file pointLocations_1.25deg.inf
and perturbationPoint_1.25deg.inf
by running:
awk '{printf "%s ", $1}' radii.inf > tmp; echo "" >> tmp; cat newHorizontalPoints_sampled3.inf >> tmp; mv tmp pointLocations_1.25deg.inf
while read p; do while read r; do echo "$p $r" >> perturbationPoint_1.25deg.inf; done < radii.inf; done < newHorizontalPoints_sampled3.inf
Create the new unknown parameter file for the 1.25 degree mesh perturbationPoint_1.25deg.inf
by running:
java io.github.kensuke1984.kibrary.inversion.addons.MakeUnknownParameterFile perturbationPoint_1.25deg.inf perturbationLayer.inf 1.25 MU LAMBDA
Rename the output file unknowns...
to unknowns_1.25deg.inf
.
Create the file perturbationPoint_2.5deg.inf
by running:
while read p; do while read r; do echo "$p $r" >> perturbationPoint_2.5deg.inf; done < radii.inf; done < newHorizontalPoints_sampled2.inf
Create the new unknown parameter file for the 2.5 degree mesh perturbationPoint_2.5deg.inf
by running:
java io.github.kensuke1984.kibrary.inversion.addons.MakeUnknownParameterFile perturbationPoint_2.5deg.inf perturbationLayer.inf 2.5 MU LAMBDA
Rename the output file unknowns...
to unknowns_2.5deg.inf
.
In tutorial_inversion
, run:
java io.github.kensuke1984.kibrary.inversion.StationInformationFile .
station.inf
gives the station code, the network code, the latitude, and longitude. The 5 first lines are:
A06 XN 60.6312 -123.4932
GGN CN 45.1184 -66.842
A07 XN 60.9368 -123.0947
ICQ CN 49.5217 -67.2719
A04 XN 59.9811 -122.9164
In folder tutorial_inversion
, run:
java io.github.kensuke1984.kibrary.Property
When prompted to, enter 7
(InformationFileMaker). Rename the output file to ifm.properties
, and edit it as follows:
locationsPath pointLocations_1.25deg.inf
stationInformationPath station.inf
np 512
tlen 3276.8
catalogue True
thetaRange 0.01 110 0.01
To create the DSM information files to compute partials, run:
java io.github.kensuke1984.kibrary.Operation ifm.properties
This will create the threedPartial
folder. The threedPartial
folder contains 4 sub-folders with input files for computation of partial derivatives using DSM:
- BPcat: for catalog of backward-propagated wavefield using shbpcat and psvbpcat
- FPinfo: for the forward-propagated wavefield using shfp and psvfp
- FPcat and BPinfo: not used in this tutorial
Move to the threedPartial/BPcat
folder, and run:
mpirun -n 8 mpi-shbpcat < PREM_SH.inf
mpirun -n 8 mpi-psvbpcat < PREM_PSV.inf
Move to the threedPartial/FPinfo/031704A
folder, and run:
mpirun -n 8 mpi-shfp < PREM_SH.inf
mpirun -n 8 mpi-psvfp < PREM_PSV.inf
In the threedPartial
folder, run:
java io.github.kensuke1984.kibrary.Property
When prompted to, enter 22
(AtAMaker).
Rename the output file to atam.properties
.
Create the file verticalMapping.inf
by running
awk '{print $1,$2,int((NR-1)/2)}' ../perturbationLayer.inf > verticalMapping_4layers.inf
Edit atam.properties
as follows:
nproc 8
components Z T
rootWaveformPath ../synthetic/filtered
waveformIDPath waveformID.dat
waveformPath waveform.dat
correctionTypes S
mode BOTH
thetaInfo 0.01 110. 0.01
sourceTimeFunction 2
timewindowPath ../synthetic/filtered/selectedTimewindow_ScS.dat
partialTypes MU LAMBDA
unknownParameterPath ../unknowns_1.25deg.inf
minFreq 0.005
maxFreq 0.08
filterNp 4
backward false
finalSamplingHz 1
resamplingRate 1
verticalMappingFile verticalMapping_4layers.inf
To compute the partial derivatives from the backward- and forward-propagated wavefield computed using DSM, run:
java io.github.kensuke1984.kibrary.Operation atam.properties
Rename the output files partial...
and partialID...
to partial_ScS.dat
and partialID_ScS.dat
.
Rename the output file newPerturbationLayers...
to newPerturbationLayers_4layers.inf
, and newUnknowns...
to newUnknowns_1.25deg_4layers.inf
.
Do the same for the PcP phase, replacing
timewindowPath ../synthetic/filtered/selectedTimewindow_PcP.dat
in atam.properties
.
Note: partials computed using AtAMaker
are already multiplied by the volume of each voxel (in contrast to partials computed using PartialDatasetMaker
.
Voxels of size 1.25 by 1.25 degrees result in too many model parameters to be handled in the inversion (i.e., to compute the AtA matrix). In order to reduce the number of model parameters, we integrate the mesh into a coarser mesh with voxels of size 2.5 by 2.5 degree. To integrate the partials for the ScS phase, in threedPartial
, run:
java io.github.kensuke1984.kibrary.waveformdata.addons.CombineParameters partialID_ScS.dat partial_ScS.dat newUnknowns_1.25deg_4layers.inf ../horizontalMapping_sampled32.inf
Rename the output files to partialID_ScS_2.5deg.dat
and partial_ScS_2.5deg.dat
.
For the PcP phase, run:
java io.github.kensuke1984.kibrary.waveformdata.addons.CombineParameters partialID_PcP.dat partial_PcP.dat newUnknowns_1.25deg_4layers.inf ../horizontalMapping_sampled32.inf
Rename the output files to partialID_PcP_2.5deg.dat
and partial_PcP_2.5deg.dat
.
We change the parametrization from LAMBDA and MU to the P- and S-wave moduli M=LAMBDA+2MU and G=MU, since the former parametrization introduce an apparent trade-off between S- and P-velocities. The elastic tensor for an isotropic medium is written equivalently as:
That is, the kernels for LAMBDA and M are identical, but the LAMBDA kernel is subtracted from the MU kernel to obtain the G kernel. This makes the M kernel sensitive only to P-velocity, and the G kernel only sensitive to the S-velocity, reducing trade-off between model parameters.
To compute the kernels for M and G for the ScS phase for the 2.5 by 2.5 degree mesh, in threedPartial
, run
java io.github.kensuke1984.kibrary.waveformdata.convert.LambdaMuToLambda2MuMu partialID_ScS_2.5deg.dat partial_ScS_2.5deg.dat
Rename the output files to partialID_ScS_2.5deg_MG.dat
and partial_ScS_2.5deg_MG.dat
.
For the PcP phase, run
java io.github.kensuke1984.kibrary.waveformdata.convert.LambdaMuToLambda2MuMu partialID_PcP_2.5deg.dat partial_PcP_2.5deg.dat
Rename the output files to partialID_PcP_2.5deg_MG.dat
and partial_PcP_2.5deg_MG.dat
.
The new partial types are named LAMBDA2MU and MU in Kibrary. Create a new newUnknowns_1.25deg_4layers.inf
file by running:
cat newUnknowns_1.25deg_4layers.inf | sed s/LAMBDA/LAMBDA2MU/ > newUnknowns_1.25deg_4layers.inf
To output ASCII files for the kernel for the PcP phase, in threedPartial
, run
java io.github.kensuke1984.kibrary.quick.KernelVisual partialID_PcP_2.5deg_MG.dat partial_PcP_2.5deg_MG.dat
This will create the folder KernelTemporalVisual
with ASCII text files containing kernel values. A python script kernel.py to make an .mpg movie from the kernel ASCII files can be found in the tutorial folder. Movies for PcP and ScS kernels can be found here.
In threedPartial
, run:
java io.github.kensuke1984.kibrary.waveformdata.addons.PartialIDMerge partialID_ScS_2.5deg_MG.dat partial_ScS_2.5deg_MG.dat partialID_PcP_2.5deg_MG.dat partial_PcP_2.5deg_MG.dat
Rename the output files to partialID_ScS_PcP_2.5deg_MG.dat
and partial_ScS_PcP_2.5deg_MG.dat
.
In tutorial_inversion/synthetic/filtered
, run:
java io.github.kensuke1984.kibrary.waveformdata.addons.BasicIDMerge waveformID_ScS.dat waveform_ScS.dat waveformID_PcP.dat waveform_PcP.dat
Rename the output files to waveformID_ScS_PcP.dat
and waveform_ScS_PcP.dat
.
Create the folder inversion
(in threedPartial
). In folder inversion
, run:
java io.github.kensuke1984.kibrary.Property
When prompted to, enter 8
(LetMeInvert).
Rename the output file to lmi.properties
.
Edit lmi.properties
as follows:
waveformIDPath ../../synthetic/filtered/waveformID_ScS_PcP.dat
waveformPath ../../synthetic/filtered/waveform_ScS_PcP.dat
partialIDPath ../partialID_ScS_PcP_2.5deg_MG.dat
partialPath ../partial_ScS_PcP_2.5deg_MG.dat
unknownParameterListPath ../newUnknowns_1.25deg_4layers.inf
stationInformationPath ../../station.inf
inverseMethods CG
modelCovariance true
cm0 1.
cmH 1.5
cmV 0.
modelCovariance true
adds an a priori smoothness constraint to the model parameters using Gaussian smoothing. cm0
controls the strength of the constraint (larger leads to a more constrained model), and cmH
and cmV
give the horizontal, and vertical correlation lengths (in degrees). Note that we set cmV 0
(i.e., no vertical smoothness constraints) because we use 50 km thick layers, which are thick enough to be completely resolved. You will have to play with values for cm0
and cmH
to find suitable regularization parameters for your dataset. For details on the definition of cm0
and cmH
, see eqs. (4) and (5) of Borgeaud et al. (2017).
Launch the inversion by running:
java io.github.kensuke1984.kibrary.Operation lmi.properties
Rename the output folder to lmi
.
In lmi
, run:
cp ../../newPerturbationLayers_4layers.inf perturbationLayer.inf
java io.github.kensuke1984.kibrary.inversion.addons.VelocityField3D 2.5
This will creates ASCII text files CG/velocityCGi.txt
, where i
is the number of conjugate gradient (CG) vectors used. Each line gives for a given voxel:
latitude longitude depth dVs dVp dVb
where dVb
is the perturbation in bulk velocity.
To visualize the velocity file using i CG vectors, you can use the python script inversion.py
in the tutorial/SCRIPTS folder, running:
python inversion.py i