-
Notifications
You must be signed in to change notification settings - Fork 20
/
histogram_calc.cpp
409 lines (349 loc) · 12.7 KB
/
histogram_calc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*
* Copyright (c) 2015, 2017, 2020 Kent A. Vander Velden, kent.vandervelden@gmail.com
*
* This file is part of BinVis.
*
* BinVis is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* BinVis is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with BinVis. If not, see <https://www.gnu.org/licenses/>.
*/
#include <cfloat>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include "histogram_calc.h"
using std::min;
using std::max;
using std::isinf;
using std::isnan;
using std::signbit;
/// string_to_histo_dtype returns a histo_dtype_t type corresponding to the type named type.
/// @param [in] s The name of the type
/// @return The associated histo_dtype_t type.
histo_dtype_t string_to_histo_dtype(const std::string &s) {
histo_dtype_t t;
if (s == "U8") t = u8;
else if (s == "U12") t = u12;
else if (s == "U16") t = u16;
else if (s == "U32") t = u32;
else if (s == "U64") t = u64;
else if (s == "F32") t = f32;
else if (s == "F64") t = f64;
else t = none;
return t;
}
template<class T>
void hist_float_helper_2d(int *hist, T *dat_f, long n) {
for (long i = 0; i < n / long(sizeof(T)) - 1; i++) {
int a1;
int a2;
if (sizeof(T) == 4) {
a1 = ((dat_f[i + 0] / FLT_MAX) * 255. + 255.) / 2.;
a2 = ((dat_f[i + 1] / FLT_MAX) * 255. + 255.) / 2.;
} else if (sizeof(T) == 8) {
a1 = ((dat_f[i + 0] / DBL_MAX) * 255. + 255.) / 2.;
a2 = ((dat_f[i + 1] / DBL_MAX) * 255. + 255.) / 2.;
} else {
abort();
}
if (isnan(dat_f[i + 0])) a1 = 255;
if (isnan(dat_f[i + 1])) a2 = 255;
if (isnan(dat_f[i + 0])) { if (signbit(dat_f[i + 0])) { a1 = 0; } else { a1 = 255; }}
if (isnan(dat_f[i + 1])) { if (signbit(dat_f[i + 1])) { a2 = 0; } else { a2 = 255; }}
if (isinf(dat_f[i + 0])) { if (signbit(dat_f[i + 0])) { a1 = 0; } else { a1 = 255; }}
if (isinf(dat_f[i + 1])) { if (signbit(dat_f[i + 1])) { a2 = 0; } else { a2 = 255; }}
#if 0
if(a1 < 0 || a1 > 255) {
printf("0 %d %f\n", a1, dat_f[i+0]);
}
if(a2 < 0 || a2 > 255) {
printf("1 %d %f %d %d\n", a2, dat_f[i+1], isnan(dat_f[i+1]), dat_f[i+1] < 0);
}
#endif
if (a1 < 0) a1 = 0;
if (a2 < 0) a2 = 0;
if (a1 > 255) a1 = 255;
if (a2 > 255) a2 = 255;
hist[a1 * 256 + a2]++;
}
}
/// generate_histo computes the histogram for each byte within dat_u8.
/// @param [in] dat_u8 Byte data to be analyzed.
/// @param [in] n Length of dat_u8 in bytes
/// @return The calculated histogram of each byte of dat_u8, as vector of length 256 scaled between [0., 1.]
float *generate_histo(const unsigned char *dat_u8, long n) { //, histo_dtype_t dtype) {
auto hist = new float[256];
memset(hist, 0, sizeof(hist[0]) * 256);
//if(dtype != u8) {
// abort()
//}
for (long i = 0; i < n; i++) {
hist[dat_u8[i]]++;
}
float mx = 0.;
for (int i = 0; i < 256; i++) {
mx = max(mx, hist[i]);
}
for (int i = 0; i < 256; i++) {
hist[i] /= mx;
}
return hist;
}
/// generate_histo_2d computes a 2d histogram of each overlapping digram within dat_u8.
/// @param [in] dat_u8 Byte data to be analyzed.
/// @param [in] n Length of dat_u8 in bytes.
/// @param [in] dtype The type of data to cast dat_u8 as.
/// @return The 2d histogram, as a linearized matrix of size 256 * 256, containing counts of each digram,
int *generate_histo_2d(const unsigned char *dat_u8, long n, histo_dtype_t dtype) {
auto hist = new int[256 * 256];
memset(hist, 0, sizeof(hist[0]) * 256 * 256);
switch (dtype) {
case none:
break;
case u8: {
for (long i = 0; i < n - 1; i++) {
int a1 = dat_u8[i + 0];
int a2 = dat_u8[i + 1];
hist[a1 * 256 + a2]++;
}
}
break;
case u16: {
auto dat_u16 = (const unsigned short *) dat_u8;
for (long i = 0; i < n / 2 - 1; i++) {
int a1 = dat_u16[i + 0] / float(0xffff) * 255.;
int a2 = dat_u16[i + 1] / float(0xffff) * 255.;
hist[a1 * 256 + a2]++;
}
}
break;
case u32: {
auto dat_u32 = (const unsigned int *) dat_u8;
for (long i = 0; i < n / 4 - 1; i++) {
int a1 = dat_u32[i + 0] / float(0xffffffff) * 255.;
int a2 = dat_u32[i + 1] / float(0xffffffff) * 255.;
hist[a1 * 256 + a2]++;
}
}
break;
case u64: {
auto dat_u64 = (const unsigned long *) dat_u8;
for (long i = 0; i < n / 8 - 1; i++) {
int a1 = dat_u64[i + 0] / float(0xffffffffffffffff) * 255.;
int a2 = dat_u64[i + 1] / float(0xffffffffffffffff) * 255.;
hist[a1 * 256 + a2]++;
}
}
break;
case f32: {
auto dat_f32 = (const float *) dat_u8;
hist_float_helper_2d(hist, dat_f32, n);
}
break;
case f64: {
auto dat_f64 = (const double *) dat_u8;
hist_float_helper_2d(hist, dat_f64, n);
}
break;
}
#if 0
int n_vertices = 0;
float m=10000000, M=-1, a=0.;
for(int i=0; i<256*256; i++) {
if(hist[i] > 0) {
n_vertices++;
if(m > hist[i]) m = hist[i];
if(M < hist[i]) M = hist[i];
a += hist[i];
}
}
a /= n_vertices;
printf("%d %f %f %f\n", n_vertices, m, M, a);
#endif
return hist;
}
template<class T>
void hist_float_helper_3d(int *hist, T *dat_f, long n, int st) {
for (long i = 0; i < n / long(sizeof(T)) - 2; i += st) {
int a1;
int a2;
int a3;
if (sizeof(T) == 4) {
a1 = ((dat_f[i + 0] / FLT_MAX) * 255. + 255.) / 2.;
a2 = ((dat_f[i + 1] / FLT_MAX) * 255. + 255.) / 2.;
a3 = ((dat_f[i + 2] / FLT_MAX) * 255. + 255.) / 2.;
} else if (sizeof(T) == 8) {
a1 = ((dat_f[i + 0] / DBL_MAX) * 255. + 255.) / 2.;
a2 = ((dat_f[i + 1] / DBL_MAX) * 255. + 255.) / 2.;
a3 = ((dat_f[i + 2] / DBL_MAX) * 255. + 255.) / 2.;
} else {
abort();
}
if (isnan(dat_f[i + 0])) a1 = 255;
if (isnan(dat_f[i + 1])) a2 = 255;
if (isnan(dat_f[i + 2])) a3 = 255;
if (isnan(dat_f[i + 0])) { if (signbit(dat_f[i + 0])) { a1 = 0; } else { a1 = 255; }}
if (isnan(dat_f[i + 1])) { if (signbit(dat_f[i + 1])) { a2 = 0; } else { a2 = 255; }}
if (isnan(dat_f[i + 2])) { if (signbit(dat_f[i + 2])) { a3 = 0; } else { a3 = 255; }}
if (isinf(dat_f[i + 0])) { if (signbit(dat_f[i + 0])) { a1 = 0; } else { a1 = 255; }}
if (isinf(dat_f[i + 1])) { if (signbit(dat_f[i + 1])) { a2 = 0; } else { a2 = 255; }}
if (isinf(dat_f[i + 2])) { if (signbit(dat_f[i + 2])) { a3 = 0; } else { a3 = 255; }}
/*
if(a1 < 0 || a1 > 255) {
printf("0 %d %f\n", a1, dat_f[i+0]);
}
if(a3 < 0 || a3 > 255) {
printf("2 %d %f\n", a3, dat_f[i+2]);
}
if(a2 < 0 || a2 > 255) {
printf("1 %d %f %d %d\n", a2, dat_f[i+1], isnan(dat_f[i+1]), dat_f[i+1] < 0);
}
*/
if (a1 < 0) a1 = 0;
if (a2 < 0) a2 = 0;
if (a3 < 0) a3 = 0;
if (a1 > 255) a1 = 255;
if (a2 > 255) a2 = 255;
if (a3 > 255) a3 = 255;
hist[a1 * 256 * 256 + a2 * 256 + a3]++;
}
}
/// generate_histo_3d computes a 3d histogram of each overlapping digram within dat_u8.
/// @param [in] dat_u8 Byte data to be analyzed.
/// @param [in] n Length of dat_u8 in bytes.
/// @param [in] dtype The type of data to cast dat_u8 as.
/// @param [in] overlap Whether to move by a single byte (true) or length of dtype (false) (not implemented correctly.)
/// @return The 2d histogram, as a linearized matrix of size 256 * 256, containing counts of each digram,
int *generate_histo_3d(const unsigned char *dat_u8, long n, histo_dtype_t dtype, bool overlap) {
auto hist = new int[256 * 256 * 256];
memset(hist, 0, sizeof(hist[0]) * 256 * 256 * 256);
int st = overlap ? 1 : 3;
switch (dtype) {
case none:
break;
case u8: {
for (long i = 0; i < n - 2; i += st) {
int a1 = dat_u8[i + 0];
int a2 = dat_u8[i + 1];
int a3 = dat_u8[i + 2];
hist[a1 * 256 * 256 + a2 * 256 + a3]++;
}
}
break;
case u12: {
auto dat_u16 = (const unsigned short *) dat_u8;
for (long i = 0; i < n / 2 - 2; i += st) {
int a1 = (dat_u16[i + 0] & 0x0fff) / float(0x0fff) * 255.;
int a2 = (dat_u16[i + 1] & 0x0fff) / float(0x0fff) * 255.;
int a3 = (dat_u16[i + 2] & 0x0fff) / float(0x0fff) * 255.;
hist[a1 * 256 * 256 + a2 * 256 + a3]++;
}
}
break;
case u16: {
auto dat_u16 = (const unsigned short *) dat_u8;
for (long i = 0; i < n / 2 - 2; i += st) {
int a1 = dat_u16[i + 0] / float(0xffff) * 255.;
int a2 = dat_u16[i + 1] / float(0xffff) * 255.;
int a3 = dat_u16[i + 2] / float(0xffff) * 255.;
hist[a1 * 256 * 256 + a2 * 256 + a3]++;
}
}
break;
case u32: {
auto dat_u32 = (const unsigned int *) dat_u8;
for (long i = 0; i < n / 4 - 2; i += st) {
int a1 = dat_u32[i + 0] / float(0xffffffff) * 255.;
int a2 = dat_u32[i + 1] / float(0xffffffff) * 255.;
int a3 = dat_u32[i + 2] / float(0xffffffff) * 255.;
hist[a1 * 256 * 256 + a2 * 256 + a3]++;
}
}
break;
case u64: {
auto dat_u64 = (const unsigned long *) dat_u8;
for (long i = 0; i < n / 8 - 2; i += st) {
int a1 = dat_u64[i + 0] / float(0xffffffffffffffff) * 255.;
int a2 = dat_u64[i + 1] / float(0xffffffffffffffff) * 255.;
int a3 = dat_u64[i + 2] / float(0xffffffffffffffff) * 255.;
hist[a1 * 256 * 256 + a2 * 256 + a3]++;
}
}
break;
case f32: {
auto dat_f32 = (const float *) dat_u8;
hist_float_helper_3d(hist, dat_f32, n, st);
}
break;
case f64: {
auto dat_f64 = (const double *) dat_u8;
hist_float_helper_3d(hist, dat_f64, n, st);
}
break;
}
#if 0
n_vertices = 0;
float m=10000000, M=-1, a=0.;
for(int i=0; i<256*256*256; i++) {
if(hist[i] > 0) {
n_vertices++;
if(m > hist[i]) m = hist[i];
if(M < hist[i]) M = hist[i];
a += hist[i];
}
}
a /= n_vertices;
printf("%d %f %f %f\n", n_vertices, m, M, a);
#endif
return hist;
}
/// generate_entropy computes the entropy within bs-sized blocks of dat_u8.
/// @param [in] dat_u8 Byte data to be analyzed.
/// @param [in] n Length of dat_u8 in bytes.
/// @param [out] rv_len The length of the return vector.
/// @param [in] bs The block sized used to analyze dat_u8.
/// @return The calculated entropy for each block of dat_u8, as vector of length rv_len scaled between [0., 1.]
float *generate_entropy(const unsigned char *dat_u8, long n, long &rv_len, int bs) { //, histo_dtype_t dtype) {
if (n <= 0) {
rv_len = 0;
return nullptr;
}
int inc = bs; // set to a value less than bs to create overlapping
long ddn = n / inc + (n % inc ? 1 : 0);
auto dd = new float[ddn];
memset(dd, 0, sizeof(dd[0]) * ddn);
for (long is = 0; is < n; is += inc) {
long ie = min(n, is + bs);
int dict[256] = {0};
for (long i = is; i < ie; i++) {
dict[dat_u8[i]]++;
}
float entropy = 0.;
for (int i = 0; i < 256; i++) {
float p = dict[i] / float(ie - is);
if (p > 0.) {
entropy += -p * logf(p);
}
}
entropy /= logf(2.0);
entropy /= 8.0;
int di = is / bs;
if (di >= ddn) {
//printf("%d %d %d %d\n", is, bs, is/bs, n);
continue;
}
dd[di] = entropy;
}
rv_len = ddn;
return dd;
}