-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
204 lines (160 loc) · 8.74 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import torch
from torchvision import transforms
from torch.utils.data import Dataset
from torch.utils.data import random_split
from torch.utils.data import DataLoader
import numpy as np
from PIL import Image, ImageFilter
image_size = None
class PetSegmentationDataset(Dataset):
def __init__(self, image_dir, annotation_dir, image_transform=None, mask_transform=None,
rotate=False, adjust_brightness=False, color_jitter=False, noise_injection=False, perspective=False, motion_blur=False):
self.image_dir = image_dir
self.annotation_dir = annotation_dir
self.image_transform = image_transform
self.mask_transform = mask_transform
self.rotate = rotate
self.adjust_brightness = adjust_brightness
self.color_jitter = color_jitter
self.noise_injection = noise_injection
self.perspective = perspective
self.motion_blur = motion_blur
self.images = [img for img in os.listdir(image_dir) if img.endswith('.jpg')]
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = os.path.join(self.image_dir, self.images[idx])
mask_path = os.path.join(self.annotation_dir, self.images[idx].replace('.jpg', '.png'))
image = Image.open(img_path).convert("RGB")
mask_pil = Image.open(mask_path).convert("L") # Assuming mask is single-channel
mask_np = np.array(mask_pil) # Convert PIL Image to numpy for inspection
mask_np = np.where(mask_np == 1, 1, 0).astype(np.uint8) # assuming you want to convert values 2 and 3 to 1
mask_pil = Image.fromarray(mask_np)
image, mask_pil = self.perturb_image(image, mask_pil)
if self.image_transform:
image = self.image_transform(image)
if self.mask_transform:
mask_tensor = self.mask_transform(mask_pil)
return image, mask_tensor
def perturb_image(self, image, mask):
if self.rotate:
angle = np.random.uniform(-30, 30) # Random rotation between -30 and 30 degrees
image = transforms.functional.rotate(image, angle)
mask = transforms.functional.rotate(mask, angle)
if self.adjust_brightness:
brightness_factor = np.random.uniform(0.5, 1.5)
image = transforms.functional.adjust_brightness(image, brightness_factor)
if self.color_jitter:
jitter = transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1)
image = jitter(image)
if self.noise_injection:
noise = torch.randn_like(transforms.functional.to_tensor(image)) * 0.05
image = transforms.functional.to_tensor(image) + noise
image = transforms.functional.to_pil_image(image.clamp(0, 1))
if self.perspective:
perspective_transform = transforms.RandomPerspective(distortion_scale=0.5, p=1, interpolation=3)
image = perspective_transform(image)
mask = perspective_transform(mask)
if self.motion_blur:
kernel_size = int(np.random.uniform(5, 10))
image = image.filter(ImageFilter.GaussianBlur(radius=kernel_size))
return image, mask
def getPetDataset(image_transform, mask_transform, args):
# INSERT PATH HERE
pet_dataset = PetSegmentationDataset(image_dir='/cs/student/projects1/2020/ssoomro/24UCL_SelfSupervised_Segmentation/mae/pet_dataset/images', annotation_dir='/cs/student/projects1/2020/ssoomro/24UCL_SelfSupervised_Segmentation/mae/pet_dataset/annotations/trimaps',image_transform=image_transform, mask_transform=mask_transform)
# Determine the lengths for train and validation sets
total_count = len(pet_dataset)
test_count = int(0.2 * total_count)
val_count = int(0.1 * total_count)
train_count = total_count - test_count - val_count # the rest for training
# Split the dataset into train, validation, and test sets
train_dataset, temp_dataset = random_split(pet_dataset, [train_count, total_count - train_count], generator=torch.Generator().manual_seed(args.seed))
val_dataset, test_dataset = random_split(temp_dataset, [val_count, test_count], generator=torch.Generator().manual_seed(args.seed))
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
return train_dataset, val_dataset, test_dataset
class OxfordPetsDataset(Dataset):
def __init__(self, img_dir, annotation_file, transform=None):
self.img_dir = img_dir
self.transform = transform
self.annotations = self._load_annotations(annotation_file)
def _load_annotations(self, annotation_file):
annotations = {}
with open(annotation_file, 'r') as file:
for line in file.readlines():
if 'CLASS-ID' in line:
continue
parts = line.strip().split(' ')
image_filename = parts[0] + '.jpg'
try:
class_id = int(parts[1]) - 1
annotations[image_filename] = class_id
except ValueError:
print(f"Skipping line due to format issue: {line}")
continue
return annotations
def __len__(self):
return len(self.annotations)
def __getitem__(self, idx):
img_name = list(self.annotations.keys())[idx]
class_id = self.annotations[img_name]
img_path = os.path.join(self.img_dir, img_name)
image = Image.open(img_path).convert('RGB')
if self.transform:
image = self.transform(image)
return image, class_id
def set_image_size(args):
global image_size
image_size = args.image_size
def custom_resize(mask):
# print("Before resizing - unique values:", np.unique(np.array(mask, dtype=np.uint8)))
mask = transforms.Resize((image_size, image_size))(mask)
return mask
def custom_to_tensor(mask):
# print("Before ToTensor - unique values:", np.unique(np.array(mask, dtype=np.uint8)))
mask = transforms.ToTensor()(mask)
return mask
def custom_to_tensor(mask):
# Convert mask to tensor manually without scaling by 255
return torch.from_numpy(np.array(mask, dtype=np.uint8)).float().div(255)
def custom_threshold(mask):
mask = torch.where(mask > 0, torch.tensor(1.0), torch.tensor(0.0))
return mask
def getPetDataset(args):
imgs_mean = [0.485, 0.456, 0.406]
imgs_std = [0.229, 0.224, 0.225]
image_transform = transforms.Compose([
transforms.Resize((args.image_size, args.image_size)),
transforms.ToTensor(),
transforms.Normalize(imgs_mean, imgs_std)
])
set_image_size(args)
mask_transform = transforms.Compose([
transforms.Lambda(custom_resize),
transforms.Lambda(custom_to_tensor),
transforms.Lambda(custom_threshold),
])
# INSERT PATH HERE
pet_dataset = PetSegmentationDataset(image_dir='/cs/student/projects1/2020/ssoomro/24UCL_SelfSupervised_Segmentation/mae/pet_dataset/images', annotation_dir='/cs/student/projects1/2020/ssoomro/24UCL_SelfSupervised_Segmentation/mae/pet_dataset/annotations/trimaps',image_transform=image_transform, mask_transform=mask_transform)
# Determine the lengths for train and validation sets
total_count = len(pet_dataset)
test_count = int(0.2 * total_count)
val_count = int(0.1 * total_count)
train_count = total_count - test_count - val_count # the rest for training
# Split the dataset into train, validation, and test sets
train_dataset, temp_dataset = random_split(pet_dataset, [train_count, total_count - train_count], generator=torch.Generator().manual_seed(args.seed))
val_dataset, test_dataset = random_split(temp_dataset, [val_count, test_count], generator=torch.Generator().manual_seed(args.seed))
if args.fine_tune_size != 1:
# Calculate the number of samples to use from the train_dataset
train_use_count = int(args.fine_tune_size * len(train_dataset))
train_unused_count = len(train_dataset) - train_use_count
# Split the train dataset to only use the specified portion
train_dataset, _ = random_split(train_dataset,[train_use_count, train_unused_count],generator=torch.Generator().manual_seed(args.seed))
print(f"Number of PET training samples: {len(train_dataset)}")
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False)
test_loader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
# return train_dataset, val_dataset, test_dataset
return train_loader, val_loader, test_loader