-
Notifications
You must be signed in to change notification settings - Fork 4.6k
/
Copy pathcheck_digraph_strongly_connected.py
69 lines (59 loc) · 2.03 KB
/
check_digraph_strongly_connected.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
"""
In a directed graph, a strongly connected component is a set of vertices such
that for any pairs of vertices u and v there exists a path (u-...-v) that
connects them. A graph is strongly connected if it is a single strongly
connected component.
"""
from collections import defaultdict
class Graph:
"""
A directed graph where edges are one-way (a two-way edge can be represented by using two edges).
"""
def __init__(self,vertex_count):
"""
Create a new graph with vertex_count vertices.
"""
self.vertex_count = vertex_count
self.graph = defaultdict(list)
def add_edge(self,source,target):
"""
Add an edge going from source to target
"""
self.graph[source].append(target)
def dfs(self):
"""
Determine if all nodes are reachable from node 0
"""
visited = [False] * self.vertex_count
self.dfs_util(0,visited)
if visited == [True]*self.vertex_count:
return True
return False
def dfs_util(self,source,visited):
"""
Determine if all nodes are reachable from the given node
"""
visited[source] = True
for adjacent in self.graph[source]:
if not visited[adjacent]:
self.dfs_util(adjacent,visited)
def reverse_graph(self):
"""
Create a new graph where every edge a->b is replaced with an edge b->a
"""
reverse_graph = Graph(self.vertex_count)
for source, adjacent in self.graph.items():
for target in adjacent:
# Note: we reverse the order of arguments
# pylint: disable=arguments-out-of-order
reverse_graph.add_edge(target,source)
return reverse_graph
def is_strongly_connected(self):
"""
Determine if the graph is strongly connected.
"""
if self.dfs():
reversed_graph = self.reverse_graph()
if reversed_graph.dfs():
return True
return False