|
| 1 | +# Copyright 2023 The KerasNLP Authors |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# https://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | +from keras_nlp.api_export import keras_nlp_export |
| 15 | +from keras_nlp.layers.preprocessing.start_end_packer import StartEndPacker |
| 16 | +from keras_nlp.models.llama.llama_tokenizer import LlamaTokenizer |
| 17 | +from keras_nlp.models.preprocessor import Preprocessor |
| 18 | +from keras_nlp.utils.keras_utils import ( |
| 19 | + convert_inputs_to_list_of_tensor_segments, |
| 20 | +) |
| 21 | +from keras_nlp.utils.keras_utils import pack_x_y_sample_weight |
| 22 | +from keras_nlp.utils.python_utils import classproperty |
| 23 | + |
| 24 | + |
| 25 | +@keras_nlp_export("keras_nlp.models.LlamaPreprocessor") |
| 26 | +class LlamaPreprocessor(Preprocessor): |
| 27 | + """A Llama preprocessing layer which tokenizes and packs inputs. |
| 28 | +
|
| 29 | + This preprocessing layer will do three things: |
| 30 | +
|
| 31 | + 1. Tokenize any number of input segments using the `tokenizer`. |
| 32 | + 2. Pack the inputs together using a `keras_nlp.layers.StartEndPacker`. |
| 33 | + with the appropriate tokens. |
| 34 | + 3. Construct a dictionary with keys `"token_ids"`, and `"padding_mask"` |
| 35 | + that can be passed directly to `keras_nlp.models.LlamaBackbone`. |
| 36 | +
|
| 37 | + This layer can be used directly with `tf.data.Dataset.map` to preprocess |
| 38 | + string data in the `(x, y, sample_weight)` format used by |
| 39 | + `keras.Model.fit`. |
| 40 | +
|
| 41 | + Args: |
| 42 | + tokenizer: A `keras_nlp.models.LlamaTokenizer` instance. |
| 43 | + sequence_length: The length of the packed inputs. |
| 44 | + add_start_token: If `True`, the preprocessor will prepend the tokenizer |
| 45 | + start token to each input sequence. Default is `True`. |
| 46 | + add_end_token: If `True`, the preprocessor will append the tokenizer |
| 47 | + end token to each input sequence. Default is `False`. |
| 48 | +
|
| 49 | + Call arguments: |
| 50 | + x: A tensor of single string sequences, or a tuple of multiple |
| 51 | + tensor sequences to be packed together. Inputs may be batched or |
| 52 | + unbatched. For single sequences, raw python inputs will be converted |
| 53 | + to tensors. For multiple sequences, pass tensors directly. |
| 54 | + y: Any label data. Will be passed through unaltered. |
| 55 | + sample_weight: Any label weight data. Will be passed through unaltered. |
| 56 | + sequence_length: Pass to override the configured `sequence_length` of |
| 57 | + the layer. |
| 58 | +
|
| 59 | + Examples: |
| 60 | +
|
| 61 | + Directly calling the from_preset(). |
| 62 | + ```python |
| 63 | + preprocessor = keras_nlp.models.LlamaPreprocessor.from_preset( |
| 64 | + "llama_base_en" |
| 65 | + ) |
| 66 | +
|
| 67 | + # Tokenize and pack a single sentence. |
| 68 | + preprocessor("The quick brown fox jumped.") |
| 69 | +
|
| 70 | + # Tokenize and a batch of single sentences. |
| 71 | + preprocessor(["The quick brown fox jumped.", "Call me Ishmael."]) |
| 72 | +
|
| 73 | + # Preprocess a batch of sentence pairs. |
| 74 | + # When handling multiple sequences, always convert to tensors first! |
| 75 | + first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."]) |
| 76 | + second = tf.constant(["The fox tripped.", "Oh look, a whale."]) |
| 77 | + preprocessor((first, second)) |
| 78 | + ``` |
| 79 | +
|
| 80 | + Mapping with `tf.data.Dataset`. |
| 81 | + ```python |
| 82 | + preprocessor = keras_nlp.models.LlamaPreprocessor.from_preset( |
| 83 | + "llama_base_en" |
| 84 | + ) |
| 85 | + first = tf.constant(["The quick brown fox jumped.", "Call me Ishmael."]) |
| 86 | + second = tf.constant(["The fox tripped.", "Oh look, a whale."]) |
| 87 | + label = tf.constant([1, 1]) |
| 88 | +
|
| 89 | + # Map labeled single sentences. |
| 90 | + ds = tf.data.Dataset.from_tensor_slices((first, label)) |
| 91 | + ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE) |
| 92 | +
|
| 93 | + # Map unlabeled single sentences. |
| 94 | + ds = tf.data.Dataset.from_tensor_slices(first) |
| 95 | + ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE) |
| 96 | +
|
| 97 | + # Map labeled sentence pairs. |
| 98 | + ds = tf.data.Dataset.from_tensor_slices(((first, second), label)) |
| 99 | + ds = ds.map(preprocessor, num_parallel_calls=tf.data.AUTOTUNE) |
| 100 | +
|
| 101 | + # Map unlabeled sentence pairs. |
| 102 | + ds = tf.data.Dataset.from_tensor_slices((first, second)) |
| 103 | +
|
| 104 | + # Watch out for tf.data's default unpacking of tuples here! |
| 105 | + # Best to invoke the `preprocessor` directly in this case. |
| 106 | + ds = ds.map( |
| 107 | + lambda first, second: preprocessor(x=(first, second)), |
| 108 | + num_parallel_calls=tf.data.AUTOTUNE, |
| 109 | + ) |
| 110 | + ``` |
| 111 | + """ |
| 112 | + |
| 113 | + def __init__( |
| 114 | + self, |
| 115 | + tokenizer, |
| 116 | + sequence_length=1024, |
| 117 | + add_start_token=True, |
| 118 | + add_end_token=False, |
| 119 | + **kwargs, |
| 120 | + ): |
| 121 | + super().__init__(**kwargs) |
| 122 | + self.tokenizer = tokenizer |
| 123 | + self.packer = None |
| 124 | + self.add_start_token = add_start_token |
| 125 | + self.add_end_token = add_end_token |
| 126 | + self.sequence_length = sequence_length |
| 127 | + |
| 128 | + def build(self, input_shape): |
| 129 | + # Defer packer creation to `build()` so that we can be sure tokenizer |
| 130 | + # assets have loaded when restoring a saved model. |
| 131 | + self.packer = StartEndPacker( |
| 132 | + start_value=self.tokenizer.start_token_id, |
| 133 | + end_value=self.tokenizer.end_token_id, |
| 134 | + sequence_length=self.sequence_length, |
| 135 | + return_padding_mask=True, |
| 136 | + ) |
| 137 | + self.built = True |
| 138 | + |
| 139 | + def get_config(self): |
| 140 | + config = super().get_config() |
| 141 | + config.update( |
| 142 | + { |
| 143 | + "sequence_length": self.sequence_length, |
| 144 | + "add_start_token": self.add_start_token, |
| 145 | + "add_end_token": self.add_end_token, |
| 146 | + } |
| 147 | + ) |
| 148 | + return config |
| 149 | + |
| 150 | + def call( |
| 151 | + self, |
| 152 | + x, |
| 153 | + y=None, |
| 154 | + sample_weight=None, |
| 155 | + sequence_length=None, |
| 156 | + ): |
| 157 | + x = convert_inputs_to_list_of_tensor_segments(x) |
| 158 | + if len(x) != 1: |
| 159 | + raise ValueError( |
| 160 | + "Llama requires each input feature to contain only " |
| 161 | + f"one segment, but received {len(x)}. If you are using Llama" |
| 162 | + " for a multi-segment classification task, please refer to " |
| 163 | + "classification models like BERT or RoBERTa." |
| 164 | + ) |
| 165 | + sequence_length = sequence_length or self.sequence_length |
| 166 | + token_ids, padding_mask = self.packer( |
| 167 | + self.tokenizer(x[0]), |
| 168 | + sequence_length=sequence_length, |
| 169 | + add_start_value=self.add_start_token, |
| 170 | + add_end_value=self.add_end_token, |
| 171 | + ) |
| 172 | + x = { |
| 173 | + "token_ids": token_ids, |
| 174 | + "padding_mask": padding_mask, |
| 175 | + } |
| 176 | + return pack_x_y_sample_weight(x, y, sample_weight) |
| 177 | + |
| 178 | + @property |
| 179 | + def sequence_length(self): |
| 180 | + """The padded length of model input sequences.""" |
| 181 | + return self._sequence_length |
| 182 | + |
| 183 | + @sequence_length.setter |
| 184 | + def sequence_length(self, value): |
| 185 | + self._sequence_length = value |
| 186 | + if self.packer is not None: |
| 187 | + self.packer.sequence_length = value |
| 188 | + |
| 189 | + @classproperty |
| 190 | + def tokenizer_cls(cls): |
| 191 | + return LlamaTokenizer |
0 commit comments