-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
189 lines (148 loc) · 7.77 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
This file contains useful methods for handling image files.
"""
import numpy as np
import tensorflow as tf
import scipy.io # to read .mat files
from PIL import Image # to read image files
PALETTE = np.reshape([
0, 0, 0, 128, 0, 0, 0, 128, 0, 128, 128, 0, 0, 0, 128, 128, 0, 128, 0, 128,
128, 128, 128, 128, 64, 0, 0, 192, 0, 0, 64, 128, 0, 192, 128, 0, 64, 0,
128, 192, 0, 128, 64, 128, 128, 192, 128, 128, 0, 64, 0, 128, 64, 0, 0,
192, 0, 128, 192, 0, 0, 64, 128, 128, 64, 128, 0, 192, 128, 128, 192, 128,
64, 64, 0, 192, 64, 0, 64, 192, 0, 192, 192, 0, 64, 64, 128, 192, 64, 128,
64, 192, 128, 192, 192, 128, 0, 0, 64, 128, 0, 64, 0, 128, 64, 128, 128,
64, 0, 0, 192, 128, 0, 192, 0, 128, 192, 128, 128, 192, 64, 0, 64, 192, 0,
64, 64, 128, 64, 192, 128, 64, 64, 0, 192, 192, 0, 192, 64, 128, 192, 192,
128, 192, 0, 64, 64, 128, 64, 64, 0, 192, 64, 128, 192, 64, 0, 64, 192,
128, 64, 192, 0, 192, 192, 128, 192, 192, 64, 64, 64, 192, 64, 64, 64, 192,
64, 192, 192, 64, 64, 64, 192, 192, 64, 192, 64, 192, 192, 192, 192, 192,
32, 0, 0, 160, 0, 0, 32, 128, 0, 160, 128, 0, 32, 0, 128, 160, 0, 128, 32,
128, 128, 160, 128, 128, 96, 0, 0, 224, 0, 0, 96, 128, 0, 224, 128, 0, 96,
0, 128, 224, 0, 128, 96, 128, 128, 224, 128, 128, 32, 64, 0, 160, 64, 0,
32, 192, 0, 160, 192, 0, 32, 64, 128, 160, 64, 128, 32, 192, 128, 160, 192,
128, 96, 64, 0, 224, 64, 0, 96, 192, 0, 224, 192, 0, 96, 64, 128, 224, 64,
128, 96, 192, 128, 224, 192, 128, 32, 0, 64, 160, 0, 64, 32, 128, 64, 160,
128, 64, 32, 0, 192, 160, 0, 192, 32, 128, 192, 160, 128, 192, 96, 0, 64,
224, 0, 64, 96, 128, 64, 224, 128, 64, 96, 0, 192, 224, 0, 192, 96, 128,
192, 224, 128, 192, 32, 64, 64, 160, 64, 64, 32, 192, 64, 160, 192, 64, 32,
64, 192, 160, 64, 192, 32, 192, 192, 160, 192, 192, 96, 64, 64, 224, 64,
64, 96, 192, 64, 224, 192, 64, 96, 64, 192, 224, 64, 192, 96, 192, 192,
224, 192, 192, 0, 32, 0, 128, 32, 0, 0, 160, 0, 128, 160, 0, 0, 32, 128,
128, 32, 128, 0, 160, 128, 128, 160, 128, 64, 32, 0, 192, 32, 0, 64, 160,
0, 192, 160, 0, 64, 32, 128, 192, 32, 128, 64, 160, 128, 192, 160, 128, 0,
96, 0, 128, 96, 0, 0, 224, 0, 128, 224, 0, 0, 96, 128, 128, 96, 128, 0,
224, 128, 128, 224, 128, 64, 96, 0, 192, 96, 0, 64, 224, 0, 192, 224, 0,
64, 96, 128, 192, 96, 128, 64, 224, 128, 192, 224, 128, 0, 32, 64, 128, 32,
64, 0, 160, 64, 128, 160, 64, 0, 32, 192, 128, 32, 192, 0, 160, 192, 128,
160, 192, 64, 32, 64, 192, 32, 64, 64, 160, 64, 192, 160, 64, 64, 32, 192,
192, 32, 192, 64, 160, 192, 192, 160, 192, 0, 96, 64, 128, 96, 64, 0, 224,
64, 128, 224, 64, 0, 96, 192, 128, 96, 192, 0, 224, 192, 128, 224, 192, 64,
96, 64, 192, 96, 64, 64, 224, 64, 192, 224, 64, 64, 96, 192, 192, 96, 192,
64, 224, 192, 192, 224, 192, 32, 32, 0, 160, 32, 0, 32, 160, 0, 160, 160,
0, 32, 32, 128, 160, 32, 128, 32, 160, 128, 160, 160, 128, 96, 32, 0, 224,
32, 0, 96, 160, 0, 224, 160, 0, 96, 32, 128, 224, 32, 128, 96, 160, 128,
224, 160, 128, 32, 96, 0, 160, 96, 0, 32, 224, 0, 160, 224, 0, 32, 96, 128,
160, 96, 128, 32, 224, 128, 160, 224, 128, 96, 96, 0, 224, 96, 0, 96, 224,
0, 224, 224, 0, 96, 96, 128, 224, 96, 128, 96, 224, 128, 224, 224, 128, 32,
32, 64, 160, 32, 64, 32, 160, 64, 160, 160, 64, 32, 32, 192, 160, 32, 192,
32, 160, 192, 160, 160, 192, 96, 32, 64, 224, 32, 64, 96, 160, 64, 224,
160, 64, 96, 32, 192, 224, 32, 192, 96, 160, 192, 224, 160, 192, 32, 96,
64, 160, 96, 64, 32, 224, 64, 160, 224, 64, 32, 96, 192, 160, 96, 192, 32,
224, 192, 160, 224, 192, 96, 96, 64, 224, 96, 64, 96, 224, 64, 224, 224,
64, 96, 96, 192, 224, 96, 192, 96, 224, 192, 224, 224, 192], (-1, 3))
def get_image(path):
'''Retrieve image as array of RGB values from .jpg file.
Args:
path (string): Path to .jpg file
Returns:
(array<np.uint8>): RGB values for each pixel. Shape=(height, width, 3)
'''
jpg = Image.open(path).convert('RGB')
return np.array(jpg)
def get_label_mat(path):
'''Retrieve class labels for each pixel from Berkeley SBD .mat file.
Args:
path (string): Path to .mat file
Returns:
(array<np.uint8>): Class as an integer in [0, 20] for each pixel. Shape=(height, width, 1)
'''
mat = scipy.io.loadmat(path)
arr = mat['GTcls']['Segmentation'].item(0,0) # this is how segmentation is stored
return arr[..., None]
def get_label_png(path):
'''Retrieve class labels for each pixel from Pascal VOC .png file.
Args:
path (string): Path to .png file
Returns:
(array<np.uint8>): Class as an integer in [-1, 20], where -1 is boundary, for each pixel. Shape=(height, width, 1)
'''
png = Image.open(path) # image is saved as palettised png. OpenCV cannot load without converting.
arr = np.array(png)
return arr[..., None]
def label_to_image(label, palette=PALETTE):
'''Converts class labels to color image using a palette.
Args:
label (array<np.uint8>): Class labels for each pixel. Shape=(height, width, 1)
palette (array<np.uint8>): RGB values for each class. Shape=(255, 3)
Returns:
(array<np.uint8>): RGB values for each pixel. Shape=(height, width, 3)
'''
return palette[label[..., 0]].astype(np.uint8)
def label_to_onehot(label, num_classes=21):
'''Converts class labels to its one-hot encoding.
Args:
label (array<np.uint8>): Class labels for each pixel. Shape=(height, width, 1)
Returns:
(array<np.uint8>): One-hot encoding of class labels for each pixel. Boundary is ignored.
Shape=(height, width, num_classes)
'''
return (np.arange(21) == label).astype(np.uint8)
def onehot_to_label(arr):
'''Opposite of label_to_onehot().'''
arr = np.argmax(arr, axis=-1).astype(np.uint8)
return arr[..., None]
## ==================================
## .tfrecords handling
## see tutorial: https://www.tensorflow.org/tutorials/load_data/tfrecord
## ==================================
def get_example(image, label):
'''Given image and label, produce a tf Example that can be written to a .tfrecords file.
Args:
image (array<np.uint8>): Shape=(height, width, 3)
label (array<np.uint8>): Shape=(height, width, 1)
Returns:
(tf Example)
'''
## Usage:
#with tf.io.TFRecordWriter(PATH_TO_TFRECORDS) as writer:
# writer.write(get_example(image, label).SerializeToString())
feature = {
'height': tf.train.Feature(int64_list=tf.train.Int64List(value=[image.shape[0]])),
'width': tf.train.Feature(int64_list=tf.train.Int64List(value=[image.shape[1]])),
'image': tf.train.Feature(bytes_list=tf.train.BytesList(value=[image.tobytes()])),
'label': tf.train.Feature(bytes_list=tf.train.BytesList(value=[label.tobytes()]))
}
return tf.train.Example(features=tf.train.Features(feature=feature))
def parse_example(example):
'''Parse tf Example to obtain image and label.
Args:
example (tf Example)
Returns:
image (array<np.uint8>): Shape=(height, width, 3)
label (array<np.uint8>): Shape=(height, width, 1)
'''
## Usage:
#dataset = tf.data.TFRecordDataset(PATH_TO_TFRECORDS).map(parse_example)
feature_description = {
'height': tf.io.FixedLenFeature([], tf.int64),
'width': tf.io.FixedLenFeature([], tf.int64),
'image': tf.io.FixedLenFeature([], tf.string),
'label': tf.io.FixedLenFeature([], tf.string),
}
dct = tf.io.parse_single_example(example, feature_description)
height = dct['height']
width = dct['width']
image = tf.reshape(tf.io.decode_raw(dct['image'], out_type=tf.uint8), (height, width, 3))
label = tf.reshape(tf.io.decode_raw(dct['label'], out_type=tf.uint8), (height, width, 1))
return image, label