forked from daswer123/FollowYourEmoji-Webui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
377 lines (304 loc) · 16.9 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import gradio as gr
import os
import numpy as np
import yaml
import cv2
import zipfile
from utils import process_video, get_npy_files, get_frame_count, process_image
from infer_script import run_inference
import time
import datetime
import shutil
import imageio
from media_pipe.draw_util import FaceMeshVisualizer
from download_models_openxlab import download
# Download models and check for exists
download()
PROCESSED_VIDEO_DIR = './processed_videos'
TEMP_DIR = './temp'
INFER_CONFIG_PATH = './configs/infer.yaml'
MODEL_PATH = './ckpt_models/ckpts'
OUTPUT_PATH = './output'
def load_config():
with open(INFER_CONFIG_PATH, 'r') as file:
return yaml.safe_load(file)
def save_config(config):
with open(INFER_CONFIG_PATH, 'w') as file:
yaml.dump(config, file)
config = load_config()
def get_video_fps(video_path):
video = cv2.VideoCapture(video_path)
fps = video.get(cv2.CAP_PROP_FPS)
video.release()
return int(fps)
def update_npy_choices():
npy_files = get_npy_files(PROCESSED_VIDEO_DIR)
return gr.update(choices=["None"] + npy_files)
def create_gif_from_npy(npy_path, gif_path):
face_results = np.load(npy_path, allow_pickle=True)
vis = FaceMeshVisualizer(forehead_edge=False)
frames = []
for face_result in face_results:
width = face_result['width']
height = face_result['height']
lmks = face_result['lmks'].astype(np.float32)
frame = vis.draw_landmarks((width, height), lmks, normed=True)
frames.append(frame)
imageio.mimsave(gif_path, frames, 'GIF', duration=0.2, loop=0)
return gif_path
def show_gif_for_npy(npy_file, video_path):
if npy_file and npy_file != "None":
npy_path = npy_file
elif video_path:
video_name = os.path.splitext(os.path.basename(video_path))[0]
npy_path = os.path.join(PROCESSED_VIDEO_DIR if input_video_save.value else TEMP_DIR, video_name, f"{video_name}_mppose.npy")
else:
return None, None, "No NPY file or video selected"
if not os.path.exists(npy_path):
return None, None, "NPY file not found"
try:
gif_path = os.path.join(os.path.dirname(npy_path), f"{os.path.splitext(os.path.basename(npy_path))[0]}_preview.gif")
gif_path_align = os.path.join(os.path.dirname(npy_path), f"{os.path.splitext(os.path.basename(npy_path))[0]}_aligned.gif")
create_gif_from_npy(npy_path, gif_path)
return gif_path,gif_path_align, "GIF created and displayed"
except Exception as e:
return None, None, f"Failed to create GIF: {str(e)}"
def process_input_video(video, save_to_processed):
if video is None:
return "No video uploaded", None, gr.update(), gr.update()
video_name = os.path.splitext(os.path.basename(video))[0]
if save_to_processed:
save_dir = os.path.join(PROCESSED_VIDEO_DIR, video_name)
else:
save_dir = os.path.join(TEMP_DIR, video_name)
os.makedirs(save_dir, exist_ok=True)
npy_path, frame_count = process_video(video, save_dir)
frame_count = frame_count - 1
fps = get_video_fps(video)
return (f"Video processed. NPY file saved at {npy_path}. Original FPS: {fps}",
npy_path,
gr.update(maximum=frame_count, value=frame_count),
gr.update(value=f"Reference video FPS: {fps}"))
def update_frame_count(npy_file):
if npy_file is None or npy_file == "None":
return gr.update()
frame_count = get_frame_count(npy_file)
return gr.update(maximum=frame_count, value=frame_count)
def update_gif_on_video_change(video):
if video:
gif_path,gif_path_align, status = show_gif_for_npy(None, video)
return gif_path,gif_path_align, status
return None, None, "No video selected"
def toggle_fps_slider(use_custom):
return gr.update(interactive=use_custom)
def crop_face(image_path, should_crop_face, npy_file, video_path, expand_x, expand_y, offset_x, offset_y):
if not should_crop_face:
return image_path, "Face cropping not requested"
if npy_file and npy_file != "None":
npy_path = npy_file
elif video_path:
video_name = os.path.splitext(os.path.basename(video_path))[0]
npy_path = os.path.join(PROCESSED_VIDEO_DIR, video_name, f"{video_name}_mppose.npy")
if not os.path.exists(npy_path):
npy_path = os.path.join(TEMP_DIR, video_name, f"{video_name}_mppose.npy")
else:
return image_path, "No NPY file or video selected for face cropping"
if not os.path.exists(npy_path):
return image_path, "NPY file not found for face cropping"
save_dir = os.path.dirname(npy_path)
cropped_image_path, motion_path = process_image(image_path, npy_path, save_dir, expand_x, expand_y, offset_x, offset_y)
if cropped_image_path:
return cropped_image_path, "Face cropped successfully"
else:
return image_path, "Face cropping failed"
def preview_crop(image_path, npy_file, video_path, expand_x, expand_y, offset_x, offset_y):
if not image_path:
return None,None, "No image uploaded"
if npy_file and npy_file != "None":
npy_path = npy_file
elif video_path:
video_name = os.path.splitext(os.path.basename(video_path))[0]
npy_path = os.path.join(PROCESSED_VIDEO_DIR, video_name, f"{video_name}_mppose.npy")
if not os.path.exists(npy_path):
npy_path = os.path.join(TEMP_DIR, video_name, f"{video_name}_mppose.npy")
else:
return None,None, "No NPY file or video selected for face cropping"
if not os.path.exists(npy_path):
return None,None, "NPY file not found for face cropping"
save_dir = TEMP_DIR
# Create if not exists
os.makedirs(save_dir, exist_ok=True)
cropped_image_path, motion_path = process_image(image_path, npy_path, save_dir, expand_x, expand_y, offset_x, offset_y)
if cropped_image_path:
return cropped_image_path,motion_path, "Crop preview generated"
else:
return None,None, "Failed to generate crop preview"
def generate_video(input_img, should_crop_face, expand_x, expand_y, offset_x, offset_y, input_video_type, input_video, input_npy_select, input_npy, input_video_frames,
settings_steps, settings_cfg_scale, settings_seed, resolution_w, resolution_h,
model_step, custom_output_path, use_custom_fps, output_fps, callback_steps, context_frames, context_stride, context_overlap, context_batch_size, anomaly_action,intropolate_factor):
config['resolution_w'] = resolution_w
config['resolution_h'] = resolution_h
config['video_length'] = input_video_frames
save_config(config)
if input_video_type == "video":
video_name = os.path.splitext(os.path.basename(input_video))[0]
lmk_path = os.path.join(PROCESSED_VIDEO_DIR if input_video_save.value else TEMP_DIR, video_name, f"{video_name}_mppose.npy")
if not use_custom_fps:
output_fps = 7
else:
if input_npy_select != "None":
lmk_path = input_npy_select
else:
lmk_path = input_npy
video_name = os.path.splitext(os.path.basename(lmk_path))[0]
if not use_custom_fps:
output_fps = 7 # default FPS
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
output_folder = f"{video_name}_{timestamp}"
if custom_output_path:
output_path = os.path.join(custom_output_path, output_folder)
else:
output_path = os.path.join(OUTPUT_PATH, output_folder)
os.makedirs(output_path, exist_ok=True)
if should_crop_face:
cropped_image_path, crop_status = crop_face(input_img, should_crop_face, input_npy_select if input_video_type == "npy" else None, input_video if input_video_type == "video" else None, expand_x, expand_y, offset_x, offset_y)
print(crop_status)
if cropped_image_path and os.path.exists(cropped_image_path):
cropped_face_in_result = os.path.join(output_path, "cropped_face.png")
shutil.copy(cropped_image_path, cropped_face_in_result)
print(f"Cropped face saved in result folder: {cropped_face_in_result}")
input_img = cropped_image_path
status, oo_video_path, all_video_path = run_inference(
config_path=INFER_CONFIG_PATH,
model_path=MODEL_PATH,
input_path=input_img,
lmk_path=lmk_path,
output_path=output_path,
model_step=model_step,
seed=settings_seed,
resolution_w=resolution_w,
resolution_h=resolution_h,
video_length=input_video_frames,
num_inference_steps=settings_steps,
guidance_scale=settings_cfg_scale,
output_fps=output_fps,
callback_steps=callback_steps,
context_frames=context_frames,
context_stride=context_stride,
context_overlap=context_overlap,
context_batch_size=context_batch_size,
anomaly_action=anomaly_action,
interpolation_factor=intropolate_factor
)
frames_archive = None
frames_dir = os.path.join(output_path, f"frames")
if os.path.exists(frames_dir):
archive_path = os.path.join(output_path, f"frames.zip")
with zipfile.ZipFile(archive_path, 'w') as zipf:
for root, dirs, files in os.walk(frames_dir):
for file in files:
zipf.write(os.path.join(root, file),
os.path.relpath(os.path.join(root, file),
os.path.join(frames_dir, '..')))
frames_archive = archive_path
print(f"The archive has been created: {archive_path}")
else:
print(f"Directory with frames not found: {frames_dir}")
return status, oo_video_path, all_video_path, frames_archive
with gr.Blocks() as demo:
gr.Markdown("# FollowYourEmoji Webui")
with gr.Row():
with gr.Column(scale=1):
input_img = gr.Image(label="Upload reference image", type="filepath", height=500)
crop_face_checkbox = gr.Checkbox(label="Crop face according to video",info="If your picture is too far away or the face doesn't fit you can use cropping, you can see a preview in the tab below", value=False)
with gr.Accordion("Face Cropping", open=False):
expand_x = gr.Slider(label="Expand X", minimum=0.5, maximum=5.0, value=1.2, step=0.01)
expand_y = gr.Slider(label="Expand Y", minimum=0.5, maximum=5.0, value=1.2, step=0.01)
offset_x = gr.Slider(label="Offset X", minimum=-1, maximum=1, value=0.0, step=0.01)
offset_y = gr.Slider(label="Offset Y", minimum=-1, maximum=1, value=0.0, step=0.01)
preview_crop_btn = gr.Button(value="Preview Crop")
with gr.Row():
crop_preview = gr.Image(label="Crop Preview", height=300)
crop_preview_motion = gr.Image(label="Preview motion Crop", height=300)
with gr.Accordion("Input Video", open=True):
input_video_type = gr.Radio(label="Input reference video type",info="You can either upload the video through the interface or use an already compiled npy file", choices=["video","npy"], value="video")
with gr.Group() as video_group:
input_video = gr.Video(label="Upload reference video", height=500)
input_video_save = gr.Checkbox(label="Save video to processed video folder", value=True)
with gr.Group(visible=False) as npy_group:
input_npy_select = gr.Dropdown(label="Select from processed video folder", choices=["None"], value="None")
input_npy_refresh = gr.Button(value="Update NPY list")
input_npy = gr.File(file_types=[".npy"], label="Upload preprocessed video in .npy")
with gr.Accordion("Animation Preview",open=False):
show_gif_btn = gr.Button(value="Show Animation preview")
with gr.Row():
gif_output = gr.Image(label="GIF Preview", height=300)
gif_output_align = gr.Image(label="Aligned GIF Preview", height=300)
with gr.Accordion("Animation Settings", open=True):
input_video_frames = gr.Slider(label="Video frames", minimum=1, maximum=30, value=30, step=1)
settings_steps = gr.Slider(label="Steps", minimum=1, maximum=200, value=30)
settings_cfg_scale = gr.Slider(label="CFG scale", minimum=0.1, maximum=20, value=3.5, step=0.1)
settings_seed = gr.Slider(minimum=0, maximum=1000, value=42, step=1, label="Seed")
intropolate_factor = gr.Slider(label="Intropolate Factor Frames",info="This is the number of frames to interpolate between the frames", minimum=1, maximum=50, value=1, step=1)
use_custom_fps = gr.Checkbox(label="Use custom FPS",info="By default the FPS is set to 7", value=True)
with gr.Row():
output_fps = gr.Slider(label="Output FPS",info="if you upload video fps slider updates to video fps", minimum=1, maximum=240, value=15, step=1)
output_fps_info = gr.Label(value="This will be the FPS information of the video you uploaded")
with gr.Accordion("Generation Settings", open=True):
context_frames = gr.Slider(label="Context Frames", minimum=1, maximum=50, value=24, step=1)
context_stride = gr.Slider(label="Context Stride", minimum=1, maximum=10, value=1, step=1)
context_overlap = gr.Slider(label="Context Overlap", minimum=0, maximum=10, value=4, step=1)
context_batch_size = gr.Slider(label="Context Batch Size", minimum=1, maximum=10, value=1, step=1)
callback_steps = gr.Slider(label="Callback Steps", minimum=1, maximum=50, value=1, step=1)
with gr.Accordion("Advanced Settings", open=False):
resolution_w = gr.Slider(label="Resolution Width", minimum=64, maximum=1024, value=config['resolution_w'], step=64)
resolution_h = gr.Slider(label="Resolution Height", minimum=64, maximum=1024, value=config['resolution_h'], step=64)
model_step = gr.Slider(label="Model Step", value=0, minimum=0, maximum=100)
custom_output_path = gr.Textbox(label="Custom Output Path", placeholder="Leave empty for default")
anomaly_action = gr.Radio(label="Anomaly Action",info="Sometimes a bad frame can slip through and this function will detect it and do what you specify", choices=["none", "remove"], value="none")
with gr.Column(scale=1):
result_status = gr.Label(value="Status")
result_video = gr.Video(label="Result Video (oo)", interactive=False, height=500)
result_video_2 = gr.Video(label="Result Video (all)", interactive=False, height=500)
result_btn = gr.Button(value="Generate Video")
frames_output = gr.File(label="Frames Archive ( You'll get an archive with all the frames )")
input_video_type.change(
fn=lambda x: (gr.update(visible=(x=="video")), gr.update(visible=(x=="npy"))),
inputs=[input_video_type],
outputs=[video_group, npy_group]
)
input_npy_refresh.click(fn=update_npy_choices, outputs=[input_npy_select])
input_video.change(
fn=process_input_video,
inputs=[input_video, input_video_save],
outputs=[result_status, input_npy, input_video_frames, output_fps_info]
)
input_npy_select.change(fn=update_frame_count, inputs=[input_npy_select], outputs=[input_video_frames])
input_npy.change(fn=update_frame_count, inputs=[input_npy], outputs=[input_video_frames])
show_gif_btn.click(fn=show_gif_for_npy, inputs=[input_npy_select, input_video], outputs=[gif_output, gif_output_align, result_status])
input_video.change(
fn=update_gif_on_video_change,
inputs=[input_video],
outputs=[gif_output,gif_output_align, result_status]
)
use_custom_fps.change(fn=toggle_fps_slider, inputs=[use_custom_fps], outputs=[output_fps])
preview_crop_btn.click(
fn=preview_crop,
inputs=[input_img, input_npy_select, input_video, expand_x, expand_y, offset_x, offset_y],
outputs=[crop_preview,crop_preview_motion, result_status]
)
result_btn.click(
fn=generate_video,
inputs=[input_img, crop_face_checkbox, expand_x, expand_y, offset_x, offset_y, input_video_type, input_video, input_npy_select, input_npy, input_video_frames,
settings_steps, settings_cfg_scale, settings_seed, resolution_w, resolution_h,
model_step, custom_output_path, use_custom_fps, output_fps, callback_steps, context_frames, context_stride, context_overlap, context_batch_size, anomaly_action,intropolate_factor],
outputs=[result_status, result_video, result_video_2, frames_output]
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--share", action="store_true", help="Enable sharing")
args = parser.parse_args()
share = args.share
demo.queue()
demo.launch(inbrowser=True, share=share)