-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
executable file
·943 lines (794 loc) · 34.8 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Talk | SFNode, May, 2017 | Numeric Computing with Node.js</title>
<meta name="description" content="Node.js and number crunching may seem an odd pair, but this is rapidly changing. In this talk, I discuss the current state-of-the-art for numeric computation in Node.js and highlight emerging technologies and libraries for analysis and machine learning. I discuss what to look for in numeric computing libraries, common implementation mistakes, and how to avoid portability issues. And I conclude by explaining why Node.js is poised to become the next big thing for data science and numeric computation.">
<meta name="author" content="Athan Reines">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<meta name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=no, minimal-ui">
<!-- Icons -->
<link rel="apple-touch-icon" sizes="180x180" href="apple-touch-icon.png">
<link rel="icon" type="image/png" sizes="32x32" href="favicon-32x32.png">
<link rel="icon" type="image/png" sizes="16x16" href="favicon-16x16.png">
<link rel="manifest" href="manifest.json">
<link rel="mask-icon" href="safari-pinned-tab.svg" color="#5bbad5">
<meta name="theme-color" content="#ffffff">
<!-- Facebook Open Graph -->
<meta property="og:type" content="website">
<meta property="og:site_name" content="stdlib">
<meta property="og:url" content="http://stdlib.io/">
<meta property="og:title" content="A standard library for JavaScript and Node.js.">
<meta property="og:description" content="stdlib is a standard library for JavaScript and Node.js, with an emphasis on numeric computing.">
<meta property="og:locale" content="en_US">
<meta property="og:image" content="">
<!-- Twitter -->
<meta name="twitter:card" content="A standard library for JavaScript and Node.js.">
<meta name="twitter:site" content="@stdlibjs">
<meta name="twitter:url" content="http://stdlib.io/">
<meta name="twitter:title" content="stdlib">
<meta name="twitter:description" content="stdlib is a standard library for JavaScript and Node.js, with an emphasis on numeric computing.">
<meta name="twitter:image" content="">
<!-- Stylesheets -->
<link rel="stylesheet" href="css/grid.css">
<link rel="stylesheet" href="css/font-awesome.css">
<link rel="stylesheet" href="css/reveal.css">
<link rel="stylesheet" href="css/theme/white.css">
<link rel="stylesheet" href="css/style.css">
<!-- Code syntax highlighting -->
<link rel="stylesheet" href="css/code/zenburn.css">
<!-- Printing and PDF exports -->
<script src="js/lib/reveal/pdf.js"></script>
<!--[if lt IE 9]>
<script src="js/lib/reveal/html5shiv.js"></script>
<![endif]-->
</head>
<body>
<header>
<a href="https://github.com/stdlib-js/stdlib"><img src="img/long_logo_white.svg" alt="stdlib"></a>
</header>
<div class="reveal">
<!-- Any section element inside of this container is displayed as a slide -->
<div class="slides">
<section id="splash" class="center" data-transition="fade-out">
<div>
<a href="https://github.com/stdlib-js/stdlib"><img src="img/long_logo_white.svg" alt="stdlib" class="undecorated" height="35%" width="35%"></a>
</div>
<div>
<small><a href="https://github.com/kgryte"><i class="fa fa-github"></i> Athan Reines</a> | <a href="https://twitter.com/kgryte"><i class="fa fa-twitter"></i> @kgryte</a> | <a href="https://twitter.com/stdlibjs"><i class="fa fa-twitter"></i> @stdlibjs</a></small>
</div>
<!-- <div>
<a href="https://github.com/stdlib-js/stdlib"><img src="img/hex_sticker_black.svg" alt="stdlib" class="undecorated"></a>
</div> -->
<aside class="notes">
</aside>
</section>
<section id="title-slide" class="center">
<h1>Numeric Computing with Node.js</h1>
<aside class="notes">
</aside>
</section>
<section class="center">
<h2 class="no-text-transform">Survey</h2>
<aside class="notes">
<ul>
<li>Who here has done what she or he considers numeric computing? e.g., machine learning, clustering, statistical analysis, data analysis, natural language processing, and every other buzz word and topic related to numbers?</li>
<li>Who here has used Python? R? Julia? MATLAB? Mathematica?</li>
<li>Who here has used JavaScript for anything?</li>
<li>Who here has used JavaScript for numeric computing?</li>
</ul>
</aside>
</section>
<section class="center">
<h2 class="no-text-transform">Overview</h2>
<div class="row">
<ul class="column column-3">
</ul>
<ol class="column column-8">
<li class="fragment">Why JavaScript?</li>
<li class="fragment">State of JavaScript</li>
<li class="fragment">State of Ecosystem</li>
<li class="fragment">A Standard Library</li>
<li class="fragment">The Future</li>
</ol>
</div>
<aside class="notes">
<p>
Going to be a roller coaster of sorts. It will be an emotional journey, but a journey which ends on a positive note and leaves you feeling good about the future! So bear with me. :)
</p>
<p>
First, I am going to motivate why you should care about numeric computing in JavaScript. :)
</p>
<p>
Next, I'll talk about the State of Math in JavaScript. :(
</p>
<p>
Then, I'll discuss the JavaScript numeric computing ecosystem. :|
</p>
<p>
I'll follow by talking about a project in which I am involved which seeks to drive the conversation forward. :)
</p>
<p>
And I'll end by telling you how you can get involved in the JavaScript computing revolution. :)
</p>
</aside>
</section>
<section class="center" data-transition="slide-in fade-out" data-transition-speed="fast">
<h2 class="no-text-transform">JavaScript</h2>
<aside class="notes">
<p>
First, let's talk about JavaScript.
</p>
</aside>
</section>
<section class="center" data-transition="none">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">Language of the Web</h2>
<aside class="notes">
<p>
JavaScript is THE language of the web, whether you like it or not.
</p>
</aside>
</section>
<section class="center" data-transition="none fade-out" data-transition-speed="fast">
<div class=" fragment row">
<pre><code class="hljs javascript" contenteditable>
import beep, { foo, bar } from 'beep';
import beep from 'beep';
import { foo, bar } from 'beep';
import { foo as fu, bar } from 'beep';
import * as beep from 'beep';
import 'beep';
</code></pre>
</div>
<div class="fragment row">
<pre><code class="hljs javascript" contenteditable>
const beep = require( 'beep' );
</code></pre>
</div>
<aside class="notes">
<p>
Depending on your bent, it has flaws (cue example flaw) and, depending on your bent, it has positive qualities (cue example trait).
</p>
</aside>
</section>
<section class="center" data-transition="none fade-out" data-transition-speed="fast">
<div class="fragment">
<div class="row">
<p class="column column-2"> </p>
<p class="column column-4">
MATLAB
</p>
<p class="column column-4">
R
</p>
</div>
<div class="row">
<p class="column column-2"> </p>
<p class="column column-4">
Python
</p>
<p class="column column-4">
Mathematica
</p>
</div>
<div class="row">
<p class="column column-2"> </p>
<p class="column column-4">
Julia
</p>
</div>
</div>
<aside class="notes">
<p>
When people think numeric computing and, in particular, what language they want to use for numeric computing, JavaScript is NOT the first to mind. Instead, people think MATLAB, R, Python, Mathematica, and more recently Julia. But not JavaScript.
</p>
</section>
<section class="center" data-transition="none">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">Why?</h2>
<aside class="notes">
<p>
Why?
</p>
</aside>
</section>
<section class="center" data-transition="slide-in fade-out">
<ul>
<li class="fragment">Dynamically compiled</li>
<li class="fragment">U/Int64</li>
<li class="fragment">BigInt/BigNumber</li>
<li class="fragment">Single-threaded</li>
<li class="fragment">Performance</li>
<li class="fragment">C/C++/Fortran bindings</li>
</ul>
<aside class="notes">
<ul>
<li>
Dynamically compiled: so are R, Python, Julia, etc.
</li>
<li>
Int64: but neither does R (https://www.r-bloggers.com/r-in-a-64-bit-world/; requires 3rd party package); in Python v2, had a "long" type (arbitrary-precision integer, which depending on how implemented can be a bit slower than dedicated machine types), which is now true for all integers in Python v3
</li>
<li>
No native BigInt/BigNumber support: neither does R (need to use a package), MATLAB requires a toolbox, Python uses arbitrary-precision integers
</li>
<li>
Single-threaded: so is R
</li>
<li>
Perf: R is notoriously "slow" (slow being a relative term); JavaScript is faster (cue a couple benchmarks)
</li>
<li>
C/C++/Fortran bindings: Node.js native add-ons and WebAssembly
</li>
</ul>
</aside>
</section>
<section class="center" data-transition="none">
<aside class="notes">
Other reasons are more substantive and include...
</aside>
</section>
<section class="center" data-transition="fade-in" data-transition-speed="default">
<h2 class="no-text-transform">Community.</h2>
<aside class="notes">
<p>
Community size. In terms of community and ecosystem, JavaScript is huge; however, the community of people doing interesting things in numeric computing with JavaScript is small.
</p>
</aside>
</section>
<section class="center" data-transition="none">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="fade-in" data-transition-speed="default">
<h2 class="no-text-transform">Libraries.</h2>
<aside class="notes">
<p>
Libraries: lack of comparable libraries (e.g., NumPy for JavaScript does not exist). This is a fair criticism.
</p>
<p>
Lack of libraries may be a reason to not <em>use</em> JavaScript for a particular application requiring such libraries here and now; however, this does not preclude us from creating those libraries so that future applications are not limited by a lack of available libraries in the first place.
</p>
<p>
But...what about first mover advantage? Those libs took years to develop and optimize? True. However, people working on this now have "last" mover advantage. The R&D has been done. Bringing to JavaScript is a matter of putting in the time and effort to read, understand, and implement comparable implementations. Not a piece of cake, but also not a herculean challenge.
</p>
</aside>
</section>
<section class="center" data-transition="none">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">Why?</h2>
<aside class="notes">
<p>
So why would we want to create those libraries, when those libraries already exist on other platforms?
</p>
</aside>
</section>
<section class="center" data-transition="none fade-out">
<ul>
<li class="fragment">Web APIs</li>
<li class="fragment">Rendering</li>
<li class="fragment">Visualization/Computation</li>
<li class="fragment">Ubiquity</li>
<li class="fragment">Distribution</li>
<li class="fragment">Package Management</li>
</ul>
<aside class="notes">
<ul>
<li>
Ability to easily use web APIs (include hardware APIs)
</li>
<li>
More easily leverage browser rendering capabilities (SVG, canvas, WebGL)
</li>
<li>
Tighter coupling between visualization and computation
</li>
<li>
Ubiquity (can run anywhere and everywhere; every fortune 500; nearly every smartphone device has a browser; increasingly IoT)
</li>
<li>
Distribution (can be as easy as providing a link)
</li>
<li>
Package management: more or less Node and npm got things right
</li>
</ul>
</aside>
</section>
<section class="center" data-transition="none">
<aside class="notes">
But there's more...
</aside>
</section>
<section class="center" data-transition="fade-in" data-transition-speed="fast">
<h2 class="no-text-transform">Applications</h2>
<aside class="notes">
Applications.
</aside>
</section>
<section class="center" data-transition="slide-in fade-out">
<ul>
<li class="fragment">Edge Computing</li>
<li class="fragment">Cross-platform</li>
<li class="fragment">Compute Intensive</li>
<li class="fragment">Interactive Data Analysis</li>
<li class="fragment">Integrated ML</li>
<li class="fragment">AI Powered</li>
</ul>
<aside class="notes">
<ul>
<li>
"edge" computing: why run compute jobs on your servers when a client's machine can do the job just as easily and at lower cost
</li>
<li>
work in the browser, on mobile, and on the desktop via Electron
</li>
<li>
compute intensive client applications (e.g., autocad, molecular modeling, image analysis)
</li>
<li>
interactive data analysis applications (e.g., sampling, filtering, feature identification and extraction)
</li>
<li>
applications with integrated machine learning (speech recognition and dictation)
</li>
<li>
AI client applications (e.g., image tracking, augmented realty)
</li>
</ul>
</aside>
</section>
<section class="center" data-transition="none">
<aside class="notes">
And lastly...
</aside>
</section>
<section class="center" data-transition="zoom-in" data-transition-speed="default">
<h2 class="no-text-transform">Mad science.</h2>
<aside class="notes">
Peer-to-peer serverless grid-computing over WebRTC.
</aside>
</section>
<section class="center" data-transition="none">
<aside class="notes">
Hopefully, your interest is piqued and you are at least sympathetic as to why you should care about numeric computing in JavaScript.
</aside>
</section>
<section class="center" data-transition="fade-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">State of Math in JavaScript</h2>
<aside class="notes">
So, at the most basic level, what is the state of math in JavaScript? Not great. :(
</aside>
</section>
<section class="center">
<div class="fragment row">
<ul class="column column-3">
<li>acos</li>
<li>asin</li>
<li>atan</li>
<li>atan2</li>
<li>cos</li>
<li>sin</li>
<li>tan</li>
<li>acosh</li>
<li>asinh</li>
<li>atanh</li>
<li>cosh</li>
<li>sinh</li>
<li>tanh</li>
</ul>
<ul class="column column-3">
<li>abs</li>
<li>exp</li>
<li>log (ln)</li>
<li>pow</li>
<li>sqrt</li>
<li>sign</li>
<li>cbrt</li>
<li>expm1</li>
<li>log10</li>
<li>log1p</li>
<li>log2</li>
</ul>
<ul class="column column-3">
<li>ceil</li>
<li>floor</li>
<li>round</li>
<li>fround</li>
<li>trunc</li>
</ul>
<ul class="column column-2">
<li>max</li>
<li>min</li>
<li>random</li>
<li>hypot</li>
<li>clz32</li>
<li>imul</li>
</ul>
</div>
<aside class="notes">
<p>
In ES5, the standard math library consisted of 18 functions and 8 constants. These functions can be categorized as trigonometric, other special functions, including rounding, and miscellaneous, including a PRNG.
</p>
<p>
ES2015/ES6 added 17 more functions to the standard math library. Again, these functions are broken down into trigonometric, other special functions, including rounding, and miscellaneous.
</p>
<p>
The addition of these 17 functions means the JavaScript standard math library has 35 functions.
</p>
<p>
In short, the JavaScript standard math library is quite small, especially when compared to other languages and dedicated numeric computing environments.
</p>
<p>
In comparison, the Golang standard math library has 54 functions (JS has 35), 8+ PRNGs, as well as support for 64-bit and 128-bit complex numbers. Notably, Golang has equivalents for most C/C++ standard math library functions.
</p>
<p>
Besides being small, the JavaScript standard math library has other problems.
</p>
</aside>
</section>
<section class="center">
<ul>
<li class="fragment">No standard algorithms.</li>
<li class="fragment">No minimum precision.</li>
<li class="fragment">Portability.</li>
<li class="fragment">No common codebase.</li>
<li class="fragment">Slow pace of innovation.</li>
<li class="fragment">Bugs.</li>
</ul>
<aside class="notes">
<ul>
<li>
ECMA-262 does not specify particular math algorithms (only recommends); hence implementors are free to choose algos according to speed/precision trade-offs.
</li>
<li>
ECMA-262 does not require a minimum precision; hence, no guarantee that a given JavaScript environment has a precise implementation.
</li>
<li>
Portability is non-existent for numeric computing applications due to potential cross-browser variability and potential variability from one browser version to the next.
</li>
<li>
No common codebase, so resolving issues takes considerable time and effort, especially when different vendors use varying implementations in varying languages with varying organization and structure.
</li>
<li>
Specification-level changes require cross-browser vendor consensus, causing the pace of innovation at the standards level to be slow (e.g., U/Int64 support has been on the table, off the table for more than a decade, and is most recently on the table as part of a BigInt proposal).
</li>
<li>
Bugs are common (cue bug or two; e.g., `pow`).
</li>
</ul>
</aside>
</section>
<section class="center">
<h2 class="no-text-transform">Math.pow</h2>
<pre><code class="hljs javascript" contenteditable>
var x = Math.pow( 10, 308 );
// returns: 1.0000000000000006e+308
// expected: 1.0e+308
</code></pre>
<aside class="notes">
<p>
Node v0.10+.
</p>
<p>
Admittedly, the error is only 3 ulp; however, those 3 ulp matter. Inaccurate results for integer inputs a) is counterintuitive because 10**308 is representable as a double (so not the same counterintuitive as 0.1 + 0.2 != 0.3) and b) ends up causing downstream accuracy issues for higher order mathematical functions as we discovered while writing such functions.
</p>
<p>
See V8 issues <a href="https://bugs.chromium.org/p/v8/issues/detail?id=3599">3599</a> and <a href="https://bugs.chromium.org/p/v8/issues/detail?id=5157">5157</a>.
</p>
</aside>
</section>
<section class="center">
<h2 class="no-text-transform">Math.exp</h2>
<pre><code class="hljs javascript" contenteditable>
var y = Math.exp( 100.0 );
// returns: 2.6881171418161485e+43
// expected: 2.6881171418161356e+43
</code></pre>
<aside class="notes">
<p>
Node v0.12, v4, v6.
</p>
<p>
Error of 26 ulp. For many values, Math.exp returns inaccurate results. Regression in Node v0.12. Fixed in Node v7.
</p>
<p>
See V8 issue <a href="https://bugs.chromium.org/p/v8/issues/detail?id=3468">3468</a>.
</p>
</aside>
</section>
<section class="center">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="fade-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">What's being done?</h2>
<aside class="notes">
What is currently being done at the specification level to address the noted shortcomings?
</aside>
</section>
<section class="center">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="none fade-out" data-transition-speed="default">
<h2 class="no-text-transform">Not much.</h2>
<aside class="notes">
Not much. And it is not entirely clear that the problems should even be addressed at the specification level for the following reasons...
</aside>
</section>
<section class="center">
<ul>
<li class="fragment">The <strong>fragmentation</strong> problem.</li>
<li class="fragment">The <strong>portability</strong> problem.</li>
<li class="fragment">The <strong>versioning</strong> problem.</li>
<li class="fragment">The <strong>flexibility</strong> problem.</li>
<li class="fragment">The <strong>backward compatibility</strong> problem.</li>
<li class="fragment">The <strong>globals</strong> problem.</li>
<li class="fragment">The <strong>testing</strong> problem.</li>
<li class="fragment">The <strong>trust</strong> problem.</li>
</ul>
<aside class="notes">
<ul>
<li>
Updating the specification does not solve the "fragmentation" problem. Notably, even if you agree on a particular algorithm for computing e^x, asking 5 or more different vendors to implement said spec, each in their own way in accordance with their own code base and conventions increases the likelihood that at least one of them will make a mistake, thus leading to the "portability" problem.
</li>
<li>
The "portability" problem is exacerbated by the lack of implementation versioning. Meaning, I cannot independently specify what version of a particular vendor implementation I want in a given runtime, which may be important if I want to guarantee exact reproducibility of my results. In an "evergreen" world, each browser restart means I might have a different underlying implementation.
</li>
<li>
On the flip side, mandating a particular algorithm at the specification level coupled with the "versioning" problem would lead to the "flexibility" problem and a corollary "backward compatibility" problem. Currently, because vendors are not required to either use a particular algorithm or meet precision requirements, they have been free to choose algorithms which, for example, favor speed over accuracy, and because no guarantees have been made in the specification, users cannot expect or rely on consistent implementations, thus allowing vendors to avoid backward compatibility requirements when changing underlying implementations. In short, "we can change our algo and even intentionally sacrifice precision for speed because the spec allows us to." There are reasonable arguments in favor of flexibility, but the domains to which they apply are NOT numeric computing!
</li>
<li>
Other problems include the "globals" problem (i.e., you cannot trust that the host environment has not been hijacked by some other library), the "testing" problem (i.e., browser vendors have historically failed to rigorously test their implementations), and the "trust" problem, which underscores all the other problems.
</li>
</ul>
</aside>
</section>
<section class="center" data-transition="none">
<aside class="notes">
<p>
So, here we are on our roller coaster. You may have gotten a bit excited in seeing the potential of JavaScript and your may have been inspired, imagining various creative ideas and applications, but the state of math in JavaScript may have you feeling a bit blue.
</p>
<p>
But alas! Surely, there's hope! Whenever the standards bodies have let us down, the community has always risen up and pushed the boundaries of what was previously thought possible!
</p>
<p>
But lo! We should temper our hope for fear that the community not meet our expectations.
</p>
</aside>
</section>
<section class="center" data-transition="fade-in" data-transition-speed="default">
<h2 class="no-text-transform">State of the Ecosystem</h2>
<aside class="notes">
Sadly, the community does not meet our expectations. And the reasons are as follows...
</aside>
</section>
<section class="center">
<ul>
<li class="fragment">False assumptions.</li>
<li class="fragment">Low hanging fruit.</li>
<li class="fragment">Poor implementations.</li>
<li class="fragment">Insufficient scope.</li>
<li class="fragment">Lack of ambition.</li>
</ul>
<aside class="notes">
<ul>
<li>
First, most libraries assume a good standard math library. As we already discussed, this is false. Any library which makes this assumption is at an immediate inherent disadvantage.
</li>
<li>
Next, much of what you see in JavaScript and on npm are the same types of libraries all addressing the same low hanging fruit (e.g., calculating the mean, variance, and standard deviation of an array), with minor differences and stylistic variations. And while the idea is fine, most people writing these libraries are either not numerically trained or simply have not done their homework as to how to write robust algorithms, which means the implementations of even the most basic functions are poor.
</li>
<li>
One of my basic litmus tests for any math library is how a library computes the variance. The classic definition involving the sum of squared differences is ill-suited for numeric computation due to the risk of overflow and catastrophic cancellation. Unfortunately, a majority of libraries fail this test.
</li>
<li>
Next, a few libraries have pushed the boundaries of what is possible. For instance, Andrew Karpathy's ConvNet.js, which does "deep learning" in a browser, or Weblas, which tries to implement BLAS algorithms via WebGL to run on graphic cards. However, these libraries are too often more proof-of-concepts than general frameworks which provide a solid foundation on top of which we can build more advanced numeric computing libraries.
</li>
<li>
Next, there is the work of Mikola Lysenko, who showed how the same multidimensional data structures used in NumPy, Julia, R, and MATLAB, and required for interfacing with BLAS libraries can be implemented in JavaScript (`ndarray`). However, despite this trailblazing work, the community has yet to effectively harness the concept of an ndarray within a general purpose computing framework.
</li>
</ul>
</aside>
</section>
<section class="center">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">A lot of noise.</h2>
<aside class="notes">
In short, there are glimmers of hope, but a lot of noise. And in particular, a lot of noise coming from people who lack the expertise and authority to be making noise in the first place.
</aside>
</section>
<section class="center">
<aside class="notes">
So, the ecosystem has failed to live up to our highest hopes and aspirations. But all is not lost. People have identified all the aforementioned problems and are actively working to make numeric computing possible in JavaScript and on the web. And those people are working on a project called stdlib.
</aside>
</section>
<section id="banner" class="center" data-background-color="#000" data-transition="zoom-in" data-transition-speed="slow" data-background-transition="none">
<div class="row">
<div class="column column-12">
<a href=""><img src="img/stdlib.png" alt="stdlib" class="undecorated"></a>
</div>
</div>
<aside class="notes">
Stdlib is a standard library for JavaScript and Node.js, with an emphasis on numeric computing.
</aside>
</section>
<section class="center">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">1000+ Packages</h2>
<aside class="notes">
Currently, the library contains 1000+ packages.
</aside>
</section>
<section class="center">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<a href="https://github.com/stdlib-js/stdlib"><img src="img/math_packages.gif" alt="stdlib" class="undecorated"></a>
<aside class="notes">
<p>
The library contains robust algorithms for special functions, random number generation, floating-point manipulation, plotting, general utilities, and more.
</p>
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<a href="https://github.com/stdlib-js/stdlib"><img src="img/prng_packages.gif" alt="stdlib" class="undecorated"></a>
<aside class="notes">
Additionally, the project has an extensive and growing list of PRNGs.
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<a href="https://github.com/stdlib-js/stdlib"><img src="img/repl_help.gif" alt="stdlib" class="undecorated"></a>
<aside class="notes">
<p>
The project leverages the Node.js REPL to create a REPL environment, which includes integrated REPL help docs.
</p>
<p>
Here, I am displaying wrappers for BLAS implementations, which are written in both JavaScript and in native C and Fortran.
</p>
<p>
I should also note that the library has WebAssembly/asm.js implementations to enable high-performance numeric computing in web browsers.
</p>
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<a href="https://github.com/stdlib-js/stdlib"><img src="img/repl_example.gif" alt="stdlib" class="undecorated"></a>
<aside class="notes">
Similar to the R REPL, you can easily run REPL examples and modify them accordingly.
</aside>
</section>
<section class="center">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="fade-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">A standard library.</h2>
<aside class="notes">
Basically, the library contains many of the essential ingredients needed to build higher-level data structures and more advanced algorithms for machine learning, statistics, and artificial intelligence.
</aside>
</section>
<section class="center">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="zoom-in fade-out" data-transition-speed="default">
<a href="https://github.com/stdlib-js/stdlib"><img src="img/bib_database.gif" alt="stdlib" class="undecorated"></a>
<aside class="notes">
And for those worried that I am one of the false prophets I referred to earlier, the project comes with an integrated bibliographic database we use to cite primary sources and has extensive testing against reference implementations found in Python, Julia, and R.
</aside>
</section>
<section class="center">
<aside class="notes">
So, hopefully, at this point, you're excited. I know I am. :)
</aside>
</section>
<section class="center" data-transition="fade-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">So what's needed?</h2>
<aside class="notes">
So what's needed?
</aside>
</section>
<section class="center">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="fade-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">Your help.</h2>
<aside class="notes">
<p>
What is needed is your help. Your help is needed to help write robust, performant code. Your help is needed to implement and test algorithms. Your help is needed to make JavaScript a first-class computing language.
</p>
<p>
As I have alluded to, the road has been long and rocky, but, hopefully, I have shown a light at the end of the tunnel. And hopefully, you'll help us get there.
</p>
</aside>
</section>
<section class="center">
<aside class="notes">
(next slide)
</aside>
</section>
<section class="center" data-transition="fade-in fade-out" data-transition-speed="default">
<h2 class="no-text-transform">Thank you!</h2>
<aside class="notes">
</aside>
</section>
<section class="center">
<div>
<a href="https://github.com/stdlib-js/stdlib"><img src="img/hex_sticker_black.svg" alt="stdlib" class="undecorated"></a>
</div>
<p>
<small><a href="https://github.com/stdlib-js/stdlib"><i class="fa fa-github"></i> https://github.com/stdlib-js/stdlib</a></small>
<br>
<small><a href="https://www.patreon.com/athan"><i class="fa fa-bitcoin"></i> https://www.patreon.com/athan</a></small>
</p>
<aside class="notes">
</aside>
</section>
<section>
<!-- Add blank slide to separate main presentation from appendix -->
<aside class="notes">
Intentionally left blank.
</aside>
</section>
<section class="center">
<h2>Appendix</h2>
</section>
<section class="center">
<!-- Intentionally many lines -->
<pre><code class="hljs javascript" contenteditable>
</code></pre>
<aside class="notes">
Slide for code editing.
</aside>
</section>
<!-- <section class="center">
<h2>Heading</h2>
</section> -->
<section class="center">
<h2>The End</h2>
</section>
</div>
</div>
<footer>
<a href="https://github.com/kgryte"><i class="fa fa-github"></i> Athan Reines</a> | <a href="https://twitter.com/kgryte"><i class="fa fa-twitter"></i> @kgryte</a> | <a href="https://twitter.com/stdlibjs"><i class="fa fa-twitter"></i> @stdlibjs</a>
</footer>
<script src="js/lib/reveal/head.min.js"></script>
<script src="js/lib/reveal/reveal.js"></script>
<script src="js/lib/reveal/init.js"></script>
<script src="js/script.js"></script>
</body>
</html>