|
| 1 | +# coding=utf-8 |
| 2 | +# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import glob |
| 17 | +import json |
| 18 | +import os |
| 19 | +from pathlib import Path |
| 20 | +from typing import Dict, List, Tuple, Union |
| 21 | + |
| 22 | +import datasets |
| 23 | + |
| 24 | +from seacrowd.utils.configs import SEACrowdConfig |
| 25 | +from seacrowd.utils.constants import Licenses, Tasks |
| 26 | + |
| 27 | +# no paper citation |
| 28 | +_CITATION = """\ |
| 29 | +""" |
| 30 | +_DATASETNAME = "thai_ser" |
| 31 | +_DESCRIPTION = """\ |
| 32 | +THAI SER dataset consists of 5 main emotions assigned to actors: Neutral, |
| 33 | +Anger, Happiness, Sadness, and Frustration. The recordings were 41 hours, |
| 34 | +36 minutes long (27,854 utterances), and were performed by 200 professional |
| 35 | +actors (112 female, 88 male) and directed by students, former alumni, and |
| 36 | +professors from the Faculty of Arts, Chulalongkorn University. The THAI SER |
| 37 | +contains 100 recordings and is separated into two main categories: Studio and |
| 38 | +Zoom. Studio recordings also consist of two studio environments: Studio A, a |
| 39 | +controlled studio room with soundproof walls, and Studio B, a normal room |
| 40 | +without soundproof or noise control. |
| 41 | +""" |
| 42 | +_HOMEPAGE = "https://github.com/vistec-AI/dataset-releases/releases/tag/v1" |
| 43 | +_LANGUAGES = ["tha"] |
| 44 | +_LICENSE = Licenses.CC_BY_SA_4_0.value |
| 45 | +_LOCAL = False |
| 46 | + |
| 47 | +_URLS = { |
| 48 | + "actor_demography": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/actor_demography.json", |
| 49 | + "emotion_label": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/emotion_label.json", |
| 50 | + "studio": { |
| 51 | + "studio1-10": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio1-10.zip", |
| 52 | + "studio11-20": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio11-20.zip", |
| 53 | + "studio21-30": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio21-30.zip", |
| 54 | + "studio31-40": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio31-40.zip", |
| 55 | + "studio41-50": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio41-50.zip", |
| 56 | + "studio51-60": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio51-60.zip", |
| 57 | + "studio61-70": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio61-70.zip", |
| 58 | + "studio71-80": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/studio71-80.zip", |
| 59 | + }, |
| 60 | + "zoom": {"zoom1-10": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/zoom1-10.zip", "zoom11-20": "https://github.com/vistec-AI/dataset-releases/releases/download/v1/zoom11-20.zip"}, |
| 61 | +} |
| 62 | +_URLS["studio_zoom"] = {**_URLS["studio"], **_URLS["zoom"]} |
| 63 | + |
| 64 | +_SUPPORTED_TASKS = [Tasks.SPEECH_EMOTION_RECOGNITION] |
| 65 | + |
| 66 | +_SOURCE_VERSION = "1.0.0" |
| 67 | +_SEACROWD_VERSION = "1.0.0" |
| 68 | + |
| 69 | + |
| 70 | +class ThaiSER(datasets.GeneratorBasedBuilder): |
| 71 | + """Thai speech emotion recognition dataset THAI SER contains 100 recordings (80 studios and 20 zooms).""" |
| 72 | + |
| 73 | + SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
| 74 | + SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
| 75 | + |
| 76 | + SEACROWD_SCHEMA_NAME = "speech" |
| 77 | + _LABELS = ["Neutral", "Angry", "Happy", "Sad", "Frustrated"] |
| 78 | + |
| 79 | + BUILDER_CONFIGS = [ |
| 80 | + # studio |
| 81 | + SEACrowdConfig( |
| 82 | + name=f"{_DATASETNAME}_source", |
| 83 | + version=SOURCE_VERSION, |
| 84 | + description=f"{_DATASETNAME} source schema", |
| 85 | + schema="source", |
| 86 | + subset_id=f"{_DATASETNAME}", |
| 87 | + ), |
| 88 | + SEACrowdConfig( |
| 89 | + name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
| 90 | + version=SEACROWD_VERSION, |
| 91 | + description=f"{_DATASETNAME} SEACrowd schema", |
| 92 | + schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
| 93 | + subset_id=f"{_DATASETNAME}", |
| 94 | + ), |
| 95 | + # studio and zoom |
| 96 | + SEACrowdConfig( |
| 97 | + name=f"{_DATASETNAME}_include_zoom_source", |
| 98 | + version=SOURCE_VERSION, |
| 99 | + description=f"{_DATASETNAME} source schema", |
| 100 | + schema="source", |
| 101 | + subset_id=f"{_DATASETNAME}_include_zoom", |
| 102 | + ), |
| 103 | + SEACrowdConfig( |
| 104 | + name=f"{_DATASETNAME}_include_zoom_seacrowd_{SEACROWD_SCHEMA_NAME}", |
| 105 | + version=SEACROWD_VERSION, |
| 106 | + description=f"{_DATASETNAME} SEACrowd schema", |
| 107 | + schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
| 108 | + subset_id=f"{_DATASETNAME}_include_zoom", |
| 109 | + ), |
| 110 | + ] |
| 111 | + |
| 112 | + DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
| 113 | + |
| 114 | + def _info(self) -> datasets.DatasetInfo: |
| 115 | + |
| 116 | + if self.config.schema == "source": |
| 117 | + features = datasets.Features( |
| 118 | + { |
| 119 | + "id": datasets.Value("string"), |
| 120 | + "path": datasets.Value("string"), |
| 121 | + "audio": datasets.Audio(sampling_rate=44_100), |
| 122 | + "speaker_id": datasets.Value("string"), |
| 123 | + "labels": datasets.ClassLabel(names=self._LABELS), |
| 124 | + "majority_emo": datasets.Value("string"), # 'None' when no single majority |
| 125 | + "annotated": datasets.Value("string"), |
| 126 | + "agreement": datasets.Value("float32"), |
| 127 | + "metadata": { |
| 128 | + "speaker_age": datasets.Value("int64"), |
| 129 | + "speaker_gender": datasets.Value("string"), |
| 130 | + }, |
| 131 | + } |
| 132 | + ) |
| 133 | + elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
| 134 | + # same as schemas.speech_features(self._LABELS) except for sampling_rate |
| 135 | + features = datasets.Features( |
| 136 | + { |
| 137 | + "id": datasets.Value("string"), |
| 138 | + "path": datasets.Value("string"), |
| 139 | + "audio": datasets.Audio(sampling_rate=44_100), |
| 140 | + "speaker_id": datasets.Value("string"), |
| 141 | + "labels": datasets.ClassLabel(names=self._LABELS), |
| 142 | + "metadata": { |
| 143 | + "speaker_age": datasets.Value("int64"), |
| 144 | + "speaker_gender": datasets.Value("string"), |
| 145 | + }, |
| 146 | + } |
| 147 | + ) |
| 148 | + |
| 149 | + return datasets.DatasetInfo( |
| 150 | + description=_DESCRIPTION, |
| 151 | + features=features, |
| 152 | + homepage=_HOMEPAGE, |
| 153 | + license=_LICENSE, |
| 154 | + citation=_CITATION, |
| 155 | + ) |
| 156 | + |
| 157 | + def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
| 158 | + """Returns SplitGenerators.""" |
| 159 | + |
| 160 | + setting = "studio_zoom" if "zoom" in self.config.name else "studio" |
| 161 | + |
| 162 | + data_paths = {"actor_demography": Path(dl_manager.download_and_extract(_URLS["actor_demography"])), "emotion_label": Path(dl_manager.download_and_extract(_URLS["emotion_label"])), setting: {}} |
| 163 | + for url_name, url_path in _URLS[setting].items(): |
| 164 | + data_paths[setting][url_name] = Path(dl_manager.download_and_extract(url_path)) |
| 165 | + |
| 166 | + return [ |
| 167 | + datasets.SplitGenerator( |
| 168 | + name=datasets.Split.TRAIN, |
| 169 | + gen_kwargs={ |
| 170 | + "actor_demography_filepath": data_paths["actor_demography"], |
| 171 | + "emotion_label_filepath": data_paths["emotion_label"], |
| 172 | + "data_filepath": data_paths[setting], |
| 173 | + "split": "train", |
| 174 | + }, |
| 175 | + ) |
| 176 | + ] |
| 177 | + |
| 178 | + def _generate_examples(self, actor_demography_filepath: Path, emotion_label_filepath: Path, data_filepath: Dict[str, Union[Path, Dict]], split: str) -> Tuple[int, Dict]: |
| 179 | + """Yields examples as (key, example) tuples.""" |
| 180 | + # read actor_demography file |
| 181 | + with open(actor_demography_filepath, "r", encoding="utf-8") as actor_demography_file: |
| 182 | + actor_demography = json.load(actor_demography_file) |
| 183 | + actor_demography_dict = {actor["Actor's ID"]: {"speaker_age": actor["Age"], "speaker_gender": actor["Sex"].lower()} for actor in actor_demography["data"]} |
| 184 | + |
| 185 | + # read emotion_label file |
| 186 | + with open(emotion_label_filepath, "r", encoding="utf-8") as emotion_label_file: |
| 187 | + emotion_label = json.load(emotion_label_file) |
| 188 | + |
| 189 | + # iterate through data folders |
| 190 | + for folder_path in data_filepath.values(): |
| 191 | + flac_files = glob.glob(os.path.join(folder_path, "**/*.flac"), recursive=True) |
| 192 | + # iterate through recordings |
| 193 | + for audio_path in flac_files: |
| 194 | + id = audio_path.split("/")[-1] |
| 195 | + speaker_id = id.split("_")[2].strip("actor") |
| 196 | + # labels in emotion_label are incomplete, labels only provided for microphone types: mic, con |
| 197 | + # otherwise, obtain label from id for scripted utterances and skip sample for the improvised utterances |
| 198 | + if id in emotion_label.keys(): |
| 199 | + assigned_emo = emotion_label[id][0]["assigned_emo"] |
| 200 | + majority_emo = emotion_label[id][0]["majority_emo"] |
| 201 | + agreement = emotion_label[id][0]["agreement"] |
| 202 | + annotated = emotion_label[id][0]["annotated"] |
| 203 | + else: |
| 204 | + if "script" in id: |
| 205 | + label = id.split("_")[-1][0] # Emotion (1 = Neutral, 2 = Angry, 3 = Happy, 4 = Sad, 5 = Frustrated) |
| 206 | + assigned_emo = self._LABELS[int(label) - 1] |
| 207 | + majority_emo = agreement = annotated = None |
| 208 | + else: |
| 209 | + continue |
| 210 | + |
| 211 | + if self.config.schema == "source": |
| 212 | + example = { |
| 213 | + "id": id.strip(".flac"), |
| 214 | + "path": audio_path, |
| 215 | + "audio": audio_path, |
| 216 | + "speaker_id": speaker_id, |
| 217 | + "labels": assigned_emo, |
| 218 | + "majority_emo": majority_emo, |
| 219 | + "agreement": agreement, |
| 220 | + "annotated": annotated, |
| 221 | + "metadata": {"speaker_age": actor_demography_dict[speaker_id]["speaker_age"], "speaker_gender": actor_demography_dict[speaker_id]["speaker_gender"]}, |
| 222 | + } |
| 223 | + elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
| 224 | + example = { |
| 225 | + "id": id.strip(".flac"), |
| 226 | + "path": audio_path, |
| 227 | + "audio": audio_path, |
| 228 | + "speaker_id": speaker_id, |
| 229 | + "labels": assigned_emo, |
| 230 | + "metadata": {"speaker_age": actor_demography_dict[speaker_id]["speaker_age"], "speaker_gender": actor_demography_dict[speaker_id]["speaker_gender"]}, |
| 231 | + } |
| 232 | + |
| 233 | + yield id.strip(".flac"), example |
0 commit comments