Skip to content
This repository has been archived by the owner on Feb 4, 2023. It is now read-only.

Latest commit

 

History

History
757 lines (571 loc) · 32.7 KB

README.md

File metadata and controls

757 lines (571 loc) · 32.7 KB

Dx_PWM Library

arduino-library-badge GitHub release GitHub contributions welcome GitHub issues

Donate to my libraries using BuyMeACoffee



Table of Contents



Important Note for Arduino IDE

With some Arduino IDE versions, such as v1.8.19, upload directly via USB to some boards, such as AVR_CuriosityNano3217 can't be done without unknown-to-me fix. We'll get the following error when uploading

avrdude: Version 6.3-20201216
         Copyright (c) 2000-2005 Brian Dean, http://www.bdmicro.com/
         Copyright (c) 2007-2014 Joerg Wunsch

         System wide configuration file is "/home/kh/.arduino15/packages/megaTinyCore/hardware/megaavr/2.5.11/avrdude.conf"
         User configuration file is "/home/kh/.avrduderc"
         User configuration file does not exist or is not a regular file, skipping

         Using Port                    : usb
         Using Programmer              : curiosity_updi
avrdude: usbdev_open(): Found nEDBG CMSIS-DAP, serno: MCHP3333021800000998
avrdude: usbdev_open(): WARNING: failed to set configuration 1: Device or resource busy
avrdude: Found CMSIS-DAP compliant device, using EDBG protocol
avrdude: usbdev_send(): wrote -5 out of 912 bytes, err = Input/output error
avrdude: jtag3_edbg_prepare(): failed to send command to serial port

avrdude done.  Thank you.

the selected serial port 
 does not exist or your board is not connected

We can use drag-and-drop method to drag-and-drop the compiled hex file to CURIOSITY virtual drive.

If success, The LED blinks slowly for 2 sec, or rapidly for 2 sec if failure

For example, to run Change_Interval example, use Arduino IDE to compile, and get the Change_Interval.ino.hex file. For Ubuntu Linux, the file is stored in directory /tmp/arduino_build_xxxxxx

After drag-and-drop the Change_Interval.ino.hex into CURIOSITY virtual drive, the code will run immediately if successfully loaded (LED blinks slowly)



Why do we need this Dx_PWM library

Features

This hardware-based PWM library, a wrapper and enhancement around DxCore analogWrite() code, enables you to use Hardware-PWM on AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.) using DxCore, to create and output PWM. These purely hardware-based PWM channels can generate very high PWM frequencies, depending on CPU clock and acceptable accuracy, due to 8 or 16-bit PWM / Timer registers.

This library is using the same or similar functions as other FastPWM libraries, as follows, to enable you to port your PWM code easily between platforms

  1. RP2040_PWM
  2. AVR_PWM
  3. megaAVR_PWM
  4. ESP32_FastPWM
  5. SAMD_PWM
  6. SAMDUE_PWM
  7. nRF52_PWM
  8. Teensy_PWM
  9. ATtiny_PWM
  10. Dx_PWM
  11. Portenta_H7_PWM
  12. MBED_RP2040_PWM
  13. nRF52_MBED_PWM
  14. STM32_PWM

The most important feature is they're purely hardware-based PWM channels. Therefore, their operations are not blocked by bad-behaving software functions / tasks.

This important feature is absolutely necessary for mission-critical tasks. These hardware PWM-channels, still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's necessary if you need to control external systems (Servo, etc.) requiring better accuracy.

New efficient setPWM_manual() function enables waveform creation using PWM.

The PWM_Multi example will demonstrate the usage of multichannel PWM using multiple Hardware-PWM blocks (slices). The 4 independent Hardware-PWM channels are used to control 4 different PWM outputs, with totally independent frequencies and dutycycles on Arduino Mega.

Being hardware-based PWM, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet or Blynk services.

This non-being-blocked important feature is absolutely necessary for mission-critical tasks.


Why using hardware-based PWM is better

Imagine you have a system with a mission-critical function, controlling a robot or doing something much more important. You normally use a software timer to poll, or even place the function in loop(). But what if another function is blocking the loop() or setup().

So your function might not be executed, and the result would be disastrous.

You'd prefer to have your function called, no matter what happening with other functions (busy loop, bug, etc.).

The correct choice is to use hardware-based PWM.

These hardware-based PWM channels still work even if other software functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software-based PWMs, using millis() or micros().

Functions using normal software-based PWMs, relying on loop() and calling millis(), won't work if the loop() or setup() is blocked by certain operation. For example, certain function is blocking while it's connecting to WiFi or some services.


Currently supported Boards

  • AVRDA-based boards (AVR128DA, AVR64DA, AVR32DA, etc.) using DxCore

  • AVRDB-based boards (AVR128DB, AVR64DB, AVR32DB, etc.) using DxCore

  • AVRDD-based boards (AVR64DD, AVR32DD, AVR16DD, etc.) using DxCore v1.5.1+


Prerequisites

  1. Arduino IDE 1.8.19+ for Arduino. GitHub release
  2. SpenceKonde DxCore core 1.5.3+ for Arduino AVRDx boards. GitHub release. Follow DxCore Installation.


Installation

Use Arduino Library Manager

The best and easiest way is to use Arduino Library Manager. Search for Dx_PWM, then select / install the latest version. You can also use this link arduino-library-badge for more detailed instructions.

Manual Install

Another way to install is to:

  1. Navigate to Dx_PWM page.
  2. Download the latest release Dx_PWM-main.zip.
  3. Extract the zip file to Dx_PWM-main directory
  4. Copy whole Dx_PWM-main folder to Arduino libraries' directory such as ~/Arduino/libraries/.

VS Code & PlatformIO

  1. Install VS Code
  2. Install PlatformIO
  3. Install Dx_PWM library by using Library Manager. Search for Dx_PWM in Platform.io Author's Libraries
  4. Use included platformio.ini file from examples to ensure that all dependent libraries will installed automatically. Please visit documentation for the other options and examples at Project Configuration File


More useful Information

1. Documents

  1. Arduino 101: Timers and Interrupts
  2. Getting Started with Timer/Counter Type B (TCB)
  3. DXCore README.md
  4. AVR128DA48-Curiosity-Nano-Hardware-User Guide
  5. AVR128DB48-Curiosity-Nano-Hardware-User Guide

2. Timer TCB0-TCB4

TCB0-TCB4 are 16-bit timers

The AVRDx boards with 14, 20, 28 or 32 pins, such as AVRDx28, will have only 3 TCB timers, (TCB0-TCB2)

The AVRDx with 48 pins, such as Curiosity Nano AVRDA48, Curiosity Nano AVRDB48, will have 4 TCB timers, (TCB0-TCB3)

The AVRDx with 64 pins, such as AVRDA64, AVRDB64, will have 5 TCB timers, (TCB0-TCB4)

The number of TCB timers will be automatically configured by the library.



Usage

Before using any PWM Timer and channel, you have to make sure the Timer and channel has not been used by any other purpose.

1. Create PWM Instance with Pin, Frequency and dutycycle

Dx_PWM* PWM_Instance;

PWM_Instance = new Dx_PWM(PWM_Pins, freq, dutyCycle);

2. Initialize PWM Instance

if (PWM_Instance)
{
  PWM_Instance->setPWM();
}

3. Set or change PWM frequency or dutyCycle

To use float new_dutyCycle

PWM_Instance->setPWM(PWM_Pins, new_frequency, new_dutyCycle);

such as

dutyCycle = 10.0f;
  
Serial.print(F("Change PWM DutyCycle to ")); Serial.println(dutyCycle);
PWM_Instance->setPWM(pinToUse, frequency, dutyCycle);

To use uint32_t new_dutyCycle = (real_dutyCycle * 65536) / 100

PWM_Instance->setPWM_Int(PWM_Pins, new_frequency, new_dutyCycle);

such as for real_dutyCycle = 50%

// 50% dutyCycle = (real_dutyCycle * 65535) / 100
dutyCycle = 32767;

Serial.print(F("Change PWM DutyCycle to (%) "));
Serial.println((float) dutyCycle * 100 / 65536);
PWM_Instance->setPWM_Int(pinToUse, frequency, dutyCycle);

for real_dutyCycle = 50%

// 20% dutyCycle = (real_dutyCycle * 65535) / 100
dutyCycle = 13107;

Serial.print(F("Change PWM DutyCycle to (%) "));
Serial.println((float) dutyCycle * 100 / 65536);
PWM_Instance->setPWM_Int(pinToUse, frequency, dutyCycle);

4. Set or change PWM frequency and dutyCycle manually and efficiently in waveform creation

Function prototype

bool setPWM_manual(const uint8_t& pin, const uint16_t& DCValue);

Need to call only once for each pin

PWM_Instance->setPWM(PWM_Pins, frequency, dutyCycle);

after that, if just changing dutyCycle / level, use

PWM_Instance->setPWM_manual(PWM_Pins, new_level);


Examples:

  1. PWM_Basic
  2. PWM_DynamicDutyCycle
  3. PWM_DynamicDutyCycle_Int
  4. PWM_DynamicFreq
  5. PWM_Multi
  6. PWM_MultiChannel
  7. PWM_Waveform
  8. PWM_StepperControl New


Example PWM_Multi

#define _PWM_LOGLEVEL_ 4
#if defined(__AVR_AVR128DA48__)
#define SerialDebug Serial1
#elif defined(__AVR_AVR128DB48__)
#define SerialDebug Serial3
#else
// standard Serial
#define SerialDebug Serial
#endif
#define PWM_GENERIC_DEBUG_PORT SerialDebug
#include "Dx_PWM.h"
#ifdef LED_BUILTIN
#undef LED_BUILTIN
// To modify according to your board
// For Curiosity Nano AVR128DA48 => PIN_PC6
// For Curiosity Nano AVR128DB48 => PIN_PB3
#if defined(__AVR_AVR128DA48__)
#define LED_BUILTIN PIN_PC6 // PIN_PB3, 13
#elif defined(__AVR_AVR128DB48__)
#define LED_BUILTIN PIN_PB3 // PIN_PC6, 13
#else
// standard Arduino pin 13
#define LED_BUILTIN 13
#endif
#endif
// On DX AVR128DB48
// PA0-3: Not PWM
// PA4-7: TD0 => not supported yet
// PB0-5: TCA1
// PC0-5: TCA0
// PC6-7: Not PWM
// PD0-7: Not PWM
// PE0-3: Not PWM
// PF0-3: Not PWM
// PF4-5: TCB
#if defined(PIN_PF5)
// Be careful to select pins for different frequencies
uint32_t PWM_Pins[] = { PIN_PC0, PIN_PF4, PIN_PF5 };
#else
// Be careful to select pins for different frequencies
uint32_t PWM_Pins[] = { PIN_PC0 };
#endif
float frequency[] = { 2000.0f, 3000.0f, 4000.0f, 8000.0f };
float dutyCycle[] = { 20.0f, 30.0f, 40.0f, 80.0f };
#define NUM_OF_PINS ( sizeof(PWM_Pins) / sizeof(uint32_t) )
Dx_PWM* PWM_Instance[NUM_OF_PINS];
char dashLine[] = "=====================================================================================";
void printPWMInfo(Dx_PWM* PWM_Instance)
{
SerialDebug.println(dashLine);
SerialDebug.print("Actual data: pin = ");
SerialDebug.print(PWM_Instance->getPin());
SerialDebug.print(", PWM DC = ");
SerialDebug.print(PWM_Instance->getActualDutyCycle());
SerialDebug.print(", PWMPeriod = ");
SerialDebug.print(PWM_Instance->getPWMPeriod());
SerialDebug.print(", PWM Freq (Hz) = ");
SerialDebug.println(PWM_Instance->getActualFreq(), 4);
SerialDebug.println(dashLine);
}
void setup()
{
SerialDebug.begin(115200);
while (!Serial && millis() < 5000);
delay(500);
SerialDebug.print(F("\nStarting PWM_Multi on "));
SerialDebug.println(BOARD_NAME);
SerialDebug.println(DX_PWM_VERSION);
for (uint8_t index = 0; index < NUM_OF_PINS; index++)
{
PWM_Instance[index] = new Dx_PWM(PWM_Pins[index], frequency[index], dutyCycle[index]);
if (PWM_Instance[index])
{
PWM_Instance[index]->setPWM();
}
}
SerialDebug.println(dashLine);
SerialDebug.println("Index\tPin\tPWM_freq\tDutyCycle\tActual Freq");
SerialDebug.println(dashLine);
for (uint8_t index = 0; index < NUM_OF_PINS; index++)
{
if (PWM_Instance[index])
{
SerialDebug.print(index);
SerialDebug.print("\t");
SerialDebug.print(PWM_Pins[index]);
SerialDebug.print("\t");
SerialDebug.print(frequency[index]);
SerialDebug.print("\t\t");
SerialDebug.print(dutyCycle[index]);
SerialDebug.print("\t\t");
SerialDebug.println(PWM_Instance[index]->getActualFreq(), 4);
}
else
{
SerialDebug.println();
}
}
for (uint8_t index = 0; index < NUM_OF_PINS; index++)
{
printPWMInfo(PWM_Instance[index]);
}
}
void loop()
{
//Long delay has no effect on the operation of hardware-based PWM channels
delay(1000000);
}



Debug Terminal Output Samples

1. PWM_DynamicDutyCycle on AVR128DB

The following is the sample terminal output when running example PWM_DynamicDutyCycle on AVR128DB using DxCore, to demonstrate the ability to provide high PWM frequencies and ability to change DutyCycle on-the-fly.

Starting PWM_DynamicDutyCycle on AVR128DB
Dx_PWM v1.1.1
[PWM] Dx_PWM: freq = 5000.00
[PWM] Dx_PWM: _dutycycle = 0
=====================================================================================
Change PWM DutyCycle to 90.00
[PWM] setPWM: _dutycycle = 58981
[PWM] setPWM_Int: pin = 39 , _dutycycle = 58981 , old frequency = 5000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 58981
[PWM] setPeriod_TimerB: F_CPU = 24000000 , cycles = 4800
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 75 , _actualFrequency = 5000.00
[PWM] setPWM_Int: TIMERB, dutycycle = 67 , DC % = 90.67
=====================================================================================
Actual data: pin = 39, PWM DC = 78642.67, PWMPeriod = 75.00, PWM Freq (Hz) = 5000.0000
=====================================================================================
Change PWM DutyCycle to 20.00
[PWM] setPWM: _dutycycle = 13107
[PWM] setPWM_Int: pin = 39 , _dutycycle = 13107 , old frequency = 5000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 13107
[PWM] setPWM_Int: TIMERB, dutycycle = 15 , DC % = 21.33
=====================================================================================
Actual data: pin = 39, PWM DC = 17477.33, PWMPeriod = 75.00, PWM Freq (Hz) = 5000.0000
=====================================================================================
Change PWM DutyCycle to 90.00
[PWM] setPWM: _dutycycle = 58981
[PWM] setPWM_Int: pin = 39 , _dutycycle = 58981 , old frequency = 5000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 58981
[PWM] setPWM_Int: TIMERB, dutycycle = 67 , DC % = 90.67
=====================================================================================
Actual data: pin = 39, PWM DC = 78642.67, PWMPeriod = 75.00, PWM Freq (Hz) = 5000.0000
=====================================================================================
Change PWM DutyCycle to 20.00
[PWM] setPWM: _dutycycle = 13107
[PWM] setPWM_Int: pin = 39 , _dutycycle = 13107 , old frequency = 5000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 13107
[PWM] setPWM_Int: TIMERB, dutycycle = 15 , DC % = 21.33
=====================================================================================
Actual data: pin = 39, PWM DC = 17477.33, PWMPeriod = 75.00, PWM Freq (Hz) = 5000.0000
=====================================================================================
Change PWM DutyCycle to 90.00
[PWM] setPWM: _dutycycle = 58981
[PWM] setPWM_Int: pin = 39 , _dutycycle = 58981 , old frequency = 5000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 58981
[PWM] setPWM_Int: TIMERB, dutycycle = 67 , DC % = 90.67
=====================================================================================
Actual data: pin = 39, PWM DC = 78642.67, PWMPeriod = 75.00, PWM Freq (Hz) = 5000.0000
=====================================================================================

2. PWM_Multi on AVR128DB

The following is the sample terminal output when running example PWM_Multi on AVR128DB, to demonstrate the ability to provide high PWM frequencies on multiple PWM-capable pins.

Starting PWM_Multi on AVR128DB
Dx_PWM v1.1.1
[PWM] Dx_PWM: freq = 2000.00
[PWM] Dx_PWM: _dutycycle = 13107
[PWM] setPWM_Int: pin = 10 , _dutycycle = 13107 , old frequency = 2000.00
[PWM] setPeriod_TimerA1: F_CPU = 24000000 , microseconds = 500 , TCA_Freq_mult = 1.00 , beginning pwmPeriod =  1500
[PWM] setPeriod_TimerA1: CLKSEL_DIV64
[PWM] setPeriod_TimerA1: pwmPeriod = 188 , _actualFrequency = 1994.00
[PWM] setPWM_Int: TIMER_TCA1, _dutycycle = 38
[PWM] Dx_PWM: freq = 3000.00
[PWM] Dx_PWM: _dutycycle = 19660
[PWM] setPWM_Int: pin = 14 , _dutycycle = 19660 , old frequency = 3000.00
[PWM] setPeriod_TimerA0: F_CPU = 24000000 , microseconds = 333 , TCA_Freq_mult = 1.00
[PWM] setPeriod_TimerA0: CLKSEL_DIV64
[PWM] setPeriod_TimerA0: pwmPeriod = 125 , _actualFrequency = 3000.00
[PWM] setPWM_Int 4: _dutycycle = 38
[PWM] Dx_PWM: freq = 4000.00
[PWM] Dx_PWM: _dutycycle = 26214
[PWM] setPWM_Int: pin = 38 , _dutycycle = 26214 , old frequency = 4000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 26214
[PWM] setPeriod_TimerB: F_CPU = 24000000 , cycles = 6000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 93 , _actualFrequency = 4000.00
[PWM] setPWM_Int: TIMERB, dutycycle = 37 , DC % = 40.86
[PWM] Dx_PWM: freq = 8000.00
[PWM] Dx_PWM: _dutycycle = 52428
[PWM] setPWM_Int: pin = 39 , _dutycycle = 52428 , old frequency = 8000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 52428
[PWM] setPeriod_TimerB: F_CPU = 24000000 , cycles = 3000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 46 , _actualFrequency = 8000.00
[PWM] setPWM_Int: TIMERB, dutycycle = 36 , DC % = 80.43
=====================================================================================
Index	Pin	PWM_freq	DutyCycle	Actual Freq
=====================================================================================
0	10	2000.00		20.00		1994.0000
1	14	3000.00		30.00		3000.0000
2	38	4000.00		40.00		4000.0000
3	39	8000.00		80.00		8000.0000
=====================================================================================
Actual data: pin = 10, PWM DC = 20.74, PWMPeriod = 188.00, PWM Freq (Hz) = 1994.0000
=====================================================================================
=====================================================================================
Actual data: pin = 14, PWM DC = 31.20, PWMPeriod = 125.00, PWM Freq (Hz) = 3000.0000
=====================================================================================
=====================================================================================
Actual data: pin = 38, PWM DC = 28188.17, PWMPeriod = 93.00, PWM Freq (Hz) = 4000.0000
=====================================================================================
=====================================================================================
Actual data: pin = 39, PWM DC = 113976.09, PWMPeriod = 46.00, PWM Freq (Hz) = 8000.0000
=====================================================================================

3. PWM_DynamicFreq on AVR128DB

The following is the sample terminal output when running example PWM_DynamicFreq on AVR128DB, to demonstrate the ability to change dynamically PWM frequencies.

Starting PWM_DynamicFreq on AVR128DB
Dx_PWM v1.1.1
[PWM] Dx_PWM: freq = 10000.00
[PWM] Dx_PWM: _dutycycle = 32767
Stop here forever
Starting PWM_DynamicFreq on AVR128DB
Dx_PWM v1.1.1
[PWM] Dx_PWM: freq = 10000.00
[PWM] Dx_PWM: _dutycycle = 32767
=====================================================================================
Change PWM Freq to 20000.00
[PWM] setPWM: _dutycycle = 32767
[PWM] setPWM_Int: pin = 39 , _dutycycle = 32767 , new frequency = 20000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 32767
[PWM] setPeriod_TimerB: F_CPU = 24000000 , cycles = 1200
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 18 , _actualFrequency = 20000.00
[PWM] setPWM_Int: TIMERB, dutycycle = 8 , DC % = 50.00
=====================================================================================
Actual data: pin = 39, PWM DC = 182044.43, PWMPeriod = 18.00, PWM Freq (Hz) = 20000.0000
=====================================================================================
Change PWM Freq to 10000.00
[PWM] setPWM: _dutycycle = 32767
[PWM] setPWM_Int: pin = 39 , _dutycycle = 32767 , new frequency = 10000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 32767
[PWM] setPeriod_TimerB: F_CPU = 24000000 , cycles = 2400
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 37 , _actualFrequency = 10000.00
[PWM] setPWM_Int: TIMERB, dutycycle = 18 , DC % = 51.35
=====================================================================================
Actual data: pin = 39, PWM DC = 88562.17, PWMPeriod = 37.00, PWM Freq (Hz) = 10000.0000
=====================================================================================
Change PWM Freq to 20000.00
[PWM] setPWM: _dutycycle = 32767
[PWM] setPWM_Int: pin = 39 , _dutycycle = 32767 , new frequency = 20000.00
[PWM] setPWM_Int: TimerB, _dutycycle = 32767
[PWM] setPeriod_TimerB: F_CPU = 24000000 , cycles = 1200
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 18 , _actualFrequency = 20000.00
[PWM] setPWM_Int: TIMERB, dutycycle = 8 , DC % = 50.00
=====================================================================================
Actual data: pin = 39, PWM DC = 182044.43, PWMPeriod = 18.00, PWM Freq (Hz) = 20000.0000
=====================================================================================

4. PWM_Waveform on AVR128DB

The following is the sample terminal output when running example PWM_Waveform on AVR128DB, to demonstrate how to use the setPWM_manual() function in wafeform creation

Starting PWM_Waveform on AVR128DB
Dx_PWM v1.1.1
[PWM] Dx_PWM: freq = 2000.00
[PWM] Dx_PWM: _dutycycle = 0
[PWM] setPWM: _dutycycle = 0
[PWM] setPeriod_TimerB: F_CPU = 24000000 , cycles = 12000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 187 , _actualFrequency = 2000.00
[PWM] setPWM_Int: TIMERB, dutycycle = 0 , DC % = 0.00
============================================================================================
Actual data: pin = 39, PWM DutyCycle = 0.53, PWMPeriod = 187.00, PWM Freq (Hz) = 2000.0000
============================================================================================
[PWM] setPWM_Int: TIMERB, dutycycle = 0 , DC % = 0.00
[PWM] setPWM_Int: TIMERB, dutycycle = 9 , DC % = 4.81
[PWM] setPWM_Int: TIMERB, dutycycle = 18 , DC % = 9.63
[PWM] setPWM_Int: TIMERB, dutycycle = 28 , DC % = 14.97
[PWM] setPWM_Int: TIMERB, dutycycle = 37 , DC % = 19.79
[PWM] setPWM_Int: TIMERB, dutycycle = 46 , DC % = 24.60
[PWM] setPWM_Int: TIMERB, dutycycle = 56 , DC % = 29.95
[PWM] setPWM_Int: TIMERB, dutycycle = 65 , DC % = 34.76
[PWM] setPWM_Int: TIMERB, dutycycle = 74 , DC % = 39.57
[PWM] setPWM_Int: TIMERB, dutycycle = 84 , DC % = 44.92
[PWM] setPWM_Int: TIMERB, dutycycle = 93 , DC % = 49.73
[PWM] setPWM_Int: TIMERB, dutycycle = 102 , DC % = 54.55
[PWM] setPWM_Int: TIMERB, dutycycle = 112 , DC % = 59.89
[PWM] setPWM_Int: TIMERB, dutycycle = 121 , DC % = 64.71
[PWM] setPWM_Int: TIMERB, dutycycle = 130 , DC % = 69.52
[PWM] setPWM_Int: TIMERB, dutycycle = 140 , DC % = 74.87
[PWM] setPWM_Int: TIMERB, dutycycle = 149 , DC % = 79.68
[PWM] setPWM_Int: TIMERB, dutycycle = 158 , DC % = 84.49
[PWM] setPWM_Int: TIMERB, dutycycle = 168 , DC % = 89.84
[PWM] setPWM_Int: TIMERB, dutycycle = 177 , DC % = 94.65
[PWM] setPWM_Int: TIMERB, dutycycle = 187 , DC % = 100.00
[PWM] setPWM_Int: TIMERB, dutycycle = 177 , DC % = 94.65
[PWM] setPWM_Int: TIMERB, dutycycle = 168 , DC % = 89.84
[PWM] setPWM_Int: TIMERB, dutycycle = 158 , DC % = 84.49
[PWM] setPWM_Int: TIMERB, dutycycle = 149 , DC % = 79.68
[PWM] setPWM_Int: TIMERB, dutycycle = 140 , DC % = 74.87
[PWM] setPWM_Int: TIMERB, dutycycle = 130 , DC % = 69.52
[PWM] setPWM_Int: TIMERB, dutycycle = 121 , DC % = 64.71
[PWM] setPWM_Int: TIMERB, dutycycle = 112 , DC % = 59.89
[PWM] setPWM_Int: TIMERB, dutycycle = 102 , DC % = 54.55
[PWM] setPWM_Int: TIMERB, dutycycle = 93 , DC % = 49.73
[PWM] setPWM_Int: TIMERB, dutycycle = 84 , DC % = 44.92
[PWM] setPWM_Int: TIMERB, dutycycle = 74 , DC % = 39.57
[PWM] setPWM_Int: TIMERB, dutycycle = 65 , DC % = 34.76
[PWM] setPWM_Int: TIMERB, dutycycle = 56 , DC % = 29.95
[PWM] setPWM_Int: TIMERB, dutycycle = 46 , DC % = 24.60
[PWM] setPWM_Int: TIMERB, dutycycle = 37 , DC % = 19.79
[PWM] setPWM_Int: TIMERB, dutycycle = 28 , DC % = 14.97
[PWM] setPWM_Int: TIMERB, dutycycle = 18 , DC % = 9.63
[PWM] setPWM_Int: TIMERB, dutycycle = 9 , DC % = 4.81
[PWM] setPWM_Int: TIMERB, dutycycle = 0 , DC % = 0.00

5. PWM_Waveform on AVR128DA

The following is the sample terminal output when running example PWM_Waveform on AVR128DA, to demonstrate how to use the setPWM_manual() function in wafeform creation

Starting PWM_Waveform on AVR128DA
Dx_PWM v1.1.1
[PWM] Dx_PWM: freq = 2000.00
[PWM] Dx_PWM: _dutycycle = 0
[PWM] setPWM: _dutycycle = 0
[PWM] setPeriod_TimerB: F_CPU = 24000000 , cycles = 12000
[PWM] setPeriod_TimerB: cycles < TIMERB_RESOLUTION * 64, using divider = 64
[PWM] setPeriod_TimerB: pwmPeriod = 187 , _actualFrequency = 2000.00
[PWM] setPWM_Int: TIMERB, dutycycle = 0 , DC % = 0.00
============================================================================================
Actual data: pin = 39, PWM DutyCycle = 0.53, PWMPeriod = 187.00, PWM Freq (Hz) = 2000.0000
============================================================================================
[PWM] setPWM_Int: TIMERB, dutycycle = 0 , DC % = 0.00
[PWM] setPWM_Int: TIMERB, dutycycle = 9 , DC % = 4.81
[PWM] setPWM_Int: TIMERB, dutycycle = 18 , DC % = 9.63
[PWM] setPWM_Int: TIMERB, dutycycle = 28 , DC % = 14.97
[PWM] setPWM_Int: TIMERB, dutycycle = 37 , DC % = 19.79
[PWM] setPWM_Int: TIMERB, dutycycle = 46 , DC % = 24.60
[PWM] setPWM_Int: TIMERB, dutycycle = 56 , DC % = 29.95
[PWM] setPWM_Int: TIMERB, dutycycle = 65 , DC % = 34.76
[PWM] setPWM_Int: TIMERB, dutycycle = 74 , DC % = 39.57
[PWM] setPWM_Int: TIMERB, dutycycle = 84 , DC % = 44.92
[PWM] setPWM_Int: TIMERB, dutycycle = 93 , DC % = 49.73
[PWM] setPWM_Int: TIMERB, dutycycle = 102 , DC % = 54.55
[PWM] setPWM_Int: TIMERB, dutycycle = 112 , DC % = 59.89
[PWM] setPWM_Int: TIMERB, dutycycle = 121 , DC % = 64.71
[PWM] setPWM_Int: TIMERB, dutycycle = 130 , DC % = 69.52
[PWM] setPWM_Int: TIMERB, dutycycle = 140 , DC % = 74.87
[PWM] setPWM_Int: TIMERB, dutycycle = 149 , DC % = 79.68
[PWM] setPWM_Int: TIMERB, dutycycle = 158 , DC % = 84.49
[PWM] setPWM_Int: TIMERB, dutycycle = 168 , DC % = 89.84
[PWM] setPWM_Int: TIMERB, dutycycle = 177 , DC % = 94.65
[PWM] setPWM_Int: TIMERB, dutycycle = 187 , DC % = 100.00
[PWM] setPWM_Int: TIMERB, dutycycle = 177 , DC % = 94.65
[PWM] setPWM_Int: TIMERB, dutycycle = 168 , DC % = 89.84
[PWM] setPWM_Int: TIMERB, dutycycle = 158 , DC % = 84.49
[PWM] setPWM_Int: TIMERB, dutycycle = 149 , DC % = 79.68
[PWM] setPWM_Int: TIMERB, dutycycle = 140 , DC % = 74.87
[PWM] setPWM_Int: TIMERB, dutycycle = 130 , DC % = 69.52
[PWM] setPWM_Int: TIMERB, dutycycle = 121 , DC % = 64.71
[PWM] setPWM_Int: TIMERB, dutycycle = 112 , DC % = 59.89
[PWM] setPWM_Int: TIMERB, dutycycle = 102 , DC % = 54.55
[PWM] setPWM_Int: TIMERB, dutycycle = 93 , DC % = 49.73
[PWM] setPWM_Int: TIMERB, dutycycle = 84 , DC % = 44.92
[PWM] setPWM_Int: TIMERB, dutycycle = 74 , DC % = 39.57
[PWM] setPWM_Int: TIMERB, dutycycle = 65 , DC % = 34.76
[PWM] setPWM_Int: TIMERB, dutycycle = 56 , DC % = 29.95
[PWM] setPWM_Int: TIMERB, dutycycle = 46 , DC % = 24.60
[PWM] setPWM_Int: TIMERB, dutycycle = 37 , DC % = 19.79
[PWM] setPWM_Int: TIMERB, dutycycle = 28 , DC % = 14.97
[PWM] setPWM_Int: TIMERB, dutycycle = 18 , DC % = 9.63
[PWM] setPWM_Int: TIMERB, dutycycle = 9 , DC % = 4.81
[PWM] setPWM_Int: TIMERB, dutycycle = 0 , DC % = 0.00


Debug

Debug is enabled by default on Serial.

You can also change the debugging level _PWM_LOGLEVEL_ from 0 to 4

// Don't define _PWM_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define _PWM_LOGLEVEL_     0

Troubleshooting

If you get compilation errors, more often than not, you may need to install a newer version of the core for Arduino boards.

Sometimes, the library will only work if you update the board core to the latest version because I am using newly added functions.



Issues

Submit issues to: Dx_PWM issues


TO DO

  1. Search for bug and improvement.
  2. Support to TCD0 to change frequency

DONE

  1. Basic hardware-based multi-channel PWMs for AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.) using DxCore
  2. Add support to AVRDD (AVR64DD, AVR32DDx, AVR16DD, etc.)
  3. Modify to use either breaking DxCore v1.5.1+ or v1.4.10-
  4. Add example PWM_StepperControl to demo how to control Stepper Motor using PWM


Contributions and Thanks

Many thanks for everyone for bug reporting, new feature suggesting, testing and contributing to the development of this library.

  1. Thanks to Paul van Dinther for proposing new way to use PWM to drive Stepper-Motor in Using PWM to step a stepper driver #16, leading to v2.0.3
dinther
Paul van Dinther


Contributing

If you want to contribute to this project:

  • Report bugs and errors
  • Ask for enhancements
  • Create issues and pull requests
  • Tell other people about this library

License

  • The library is licensed under MIT

Copyright

Copyright (c) 2022- Khoi Hoang