This repository has been archived by the owner on Jan 29, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathISR_RPM_Measure.ino
209 lines (168 loc) · 6.55 KB
/
ISR_RPM_Measure.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
/****************************************************************************************************************************
ISR_RPM_Measure.ino
For Arduino AVRDx-based boards (AVR128Dx, AVR64Dx, AVR32Dx, etc.) using DxCore
Written by Khoi Hoang
Built by Khoi Hoang https://github.com/khoih-prog/Dx_TimerInterrupt
Licensed under MIT license
Now with we can use these new 16 ISR-based timers, while consuming only 1 hwarware Timer.
Their independently-selected, maximum interval is practically unlimited (limited only by unsigned long miliseconds)
The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers
Therefore, their executions are not blocked by bad-behaving functions / tasks.
This important feature is absolutely necessary for mission-critical tasks.
*****************************************************************************************************************************/
// Important Note: To use drag-and-drop into CURIOSITY virtual drive if you can program via Arduino IDE
// For example, check https://ww1.microchip.com/downloads/en/DeviceDoc/AVR128DB48-Curiosity-Nano-HW-UserG-DS50003037A.pdf
#if !( defined(DXCORE) || defined(MEGATINYCORE) )
#error This is designed only for DXCORE or MEGATINYCORE megaAVR board! Please check your Tools->Board setting
#endif
// These define's must be placed at the beginning before #include "megaAVR_TimerInterrupt.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG 0
#define _TIMERINTERRUPT_LOGLEVEL_ 0
// Select USING_FULL_CLOCK == true for 24/16MHz to Timer TCBx => shorter timer, but better accuracy
// Select USING_HALF_CLOCK == true for 12/ 8MHz to Timer TCBx => shorter timer, but better accuracy
// Select USING_250KHZ == true for 250KHz to Timer TCBx => longer timer, but worse accuracy
// Not select for default 250KHz to Timer TCBx => longer timer, but worse accuracy
#define USING_FULL_CLOCK true
#define USING_HALF_CLOCK false
#define USING_250KHZ false // Not supported now
#define USE_TIMER_0 false
#define USE_TIMER_1 true
#define USE_TIMER_2 false // Normally used by millis(). Don't use
#define USE_TIMER_3 false
#define USE_TIMER_4 false
#if USE_TIMER_0
#define CurrentTimer ITimer0
#elif USE_TIMER_1
#define CurrentTimer ITimer1
#elif USE_TIMER_2
#define CurrentTimer ITimer2
#elif USE_TIMER_3
#define CurrentTimer ITimer3
#elif USE_TIMER_4
#define CurrentTimer ITimer4
#else
#error You must select one Timer
#endif
// To be included only in main(), .ino with setup() to avoid `Multiple Definitions` Linker Error
#include "Dx_TimerInterrupt.h"
#ifdef LED_BUILTIN
#undef LED_BUILTIN
// To modify according to your board
// For Curiosity Nano AVR128DA48 => PIN_PC6
// For Curiosity Nano AVR128DB48 => PIN_PB3
#if defined(__AVR_AVR128DA48__)
#define LED_BUILTIN PIN_PC6 // PIN_PB3, 13
#elif defined(__AVR_AVR128DB48__)
#define LED_BUILTIN PIN_PB3 // PIN_PC6, 13
#else
// standard Arduino pin 13
#define LED_BUILTIN 13
#endif
#endif
#if defined(__AVR_AVR128DA48__)
#define SerialDebug Serial1
#elif defined(__AVR_AVR128DB48__)
#define SerialDebug Serial3
#else
// standard Serial
#define SerialDebug Serial
#endif
// To modify according to your board
// For Curiosity Nano AVR128DA48 => use SW => PIN_PC7
// For Curiosity Nano AVR128DB48 => use SW => PIN_PB2
#if defined(__AVR_AVR128DA48__)
unsigned int interruptPin = PIN_PC7;
#elif defined(__AVR_AVR128DB48__)
unsigned int interruptPin = PIN_PB2;
#else
unsigned int interruptPin = PIN_PA7; // Original LED_BUILTIN for AVR128DA48/AVR128DB48
#endif
#define TIMER1_INTERVAL_MS 1
#define DEBOUNCING_INTERVAL_MS 80
#define LOCAL_DEBUG 1
volatile unsigned long rotationTime = 0;
float RPM = 0.00;
float avgRPM = 0.00;
volatile int debounceCounter;
#define KAVG 100
volatile bool activeState = false;
void detectRotation()
{
activeState = true;
}
void TimerHandler1()
{
if ( activeState )
{
// Reset to prepare for next round of interrupt
activeState = false;
if (debounceCounter >= DEBOUNCING_INTERVAL_MS / TIMER1_INTERVAL_MS )
{
//min time between pulses has passed
RPM = (float) ( 60000.0f / ( rotationTime * TIMER1_INTERVAL_MS ) );
avgRPM = ( 2 * avgRPM + RPM) / 3,
#if (TIMER_INTERRUPT_DEBUG > 1)
SerialDebug.print("RPM = "); SerialDebug.print(avgRPM);
SerialDebug.print(", rotationTime ms = "); SerialDebug.println(rotationTime * TIMER1_INTERVAL_MS);
#endif
rotationTime = 0;
debounceCounter = 0;
}
else
debounceCounter++;
}
else
{
debounceCounter++;
}
if (rotationTime >= 5000)
{
// If idle, set RPM to 0, don't increase rotationTime
RPM = 0;
#if (TIMER_INTERRUPT_DEBUG > 1)
SerialDebug.print("RPM = "); SerialDebug.print(RPM); SerialDebug.print(", rotationTime = "); SerialDebug.println(rotationTime);
#endif
rotationTime = 0;
}
else
{
rotationTime++;
}
}
void setup()
{
SerialDebug.begin(115200);
while (!SerialDebug && millis() < 5000);
pinMode(LED_BUILTIN, OUTPUT);
pinMode(interruptPin, INPUT_PULLUP);
SerialDebug.print(F("\nStarting ISR_RPM_Measure on ")); SerialDebug.println(BOARD_NAME);
SerialDebug.println(DX_TIMER_INTERRUPT_VERSION);
SerialDebug.print(F("CPU Frequency = ")); SerialDebug.print(F_CPU / 1000000); SerialDebug.println(F(" MHz"));
SerialDebug.print(F("TCB Clock Frequency = "));
#if USING_FULL_CLOCK
SerialDebug.println(F("Full clock (24/16MHz, etc) for highest accuracy"));
#elif USING_HALF_CLOCK
SerialDebug.println(F("Half clock (12/8MHz, etc.) for high accuracy"));
#else
SerialDebug.println(F("250KHz for lower accuracy but longer time"));
#endif
// Timer0 is used for micros(), millis(), delay(), etc and can't be used
// Select Timer 1-2 for UNO, 0-5 for MEGA
// Timer 2 is 8-bit timer, only for higher frequency
CurrentTimer.init();
// Using ATmega328 used in UNO => 16MHz CPU clock ,
if (CurrentTimer.attachInterruptInterval(TIMER1_INTERVAL_MS, TimerHandler1))
{
SerialDebug.print(F("Starting ITimer OK, millis() = "));
SerialDebug.println(millis());
}
else
SerialDebug.println(F("Can't set ITimer. Select another freq. or timer"));
// Assumming the interruptPin will go LOW
attachInterrupt(digitalPinToInterrupt(interruptPin), detectRotation, FALLING);
}
void loop()
{
}