-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppgn_vlb.py
391 lines (349 loc) · 21.1 KB
/
ppgn_vlb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
import logging
import time
import os
import sys
import graph_tool.all as gt
from easydict import EasyDict as edict
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from evaluation.stats import eval_torch_batch
from model.langevin_mc import LangevinMCSampler
from sample_ppgn_vlb import sample_main, sample_testing
from utils.arg_helper import edict2dict, parse_arguments, get_config, process_config, set_seed_and_logger, load_data, graphs_to_tensor
from utils.graph_utils import gen_list_of_data_single, generate_mask
from utils.loading_utils import get_mc_sampler, get_score_model, eval_sample_batch
from utils.visual_utils import plot_graphs_adj
from model.ppgn import Powerful
from matplotlib import pyplot as plt
import wandb
# Given the list of sigmas used, return a list of sigmas
def sigma_lin(sigma_list):
sigmas = []
for g,sigma in enumerate(sigma_list):
if sigma < 1.0e-5:
sigmas.append(0.0)
continue
sigmas.append(((1-sigma) - (1-sigma_list[g-1])) / (1 - 2 * (1 - sigma_list[g-1])))
return sigmas
# A function for getting the loss compared to the training set (only used for the model selection)
def eval_loss(eval_set, num_levels, config, model):
sigma_ind_list = np.array(range(1,num_levels[0]+1))
if not config.linear:
sigma_ind_list = np.array(range(1, num_levels[0]+1))
c = torch.tensor(range(0, num_levels[0]+1))
c = c * (0.5 * np.pi / num_levels[0])
c = torch.cos(c)
sigma_line = 0.5 - 0.5 * c
else:
sigma_line = torch.linspace(0,1/2,num_levels[0]+1).tolist()
sigma_list = [sigma_line[i] for i in sigma_ind_list]
sig_list = sigma_lin(sigma_line)
sigma_nontild_list = [sig_list[i] for i in sigma_ind_list]
# Eval set is list of size 32 x 2 x tensor(n x n)
loss = 0.0
for eval_adj_b, eval_x_b in eval_set:
adjs = eval_adj_b.repeat(num_levels[0],1,1).to(config.dev)
xs = eval_x_b.repeat(num_levels[0],1,1).to(config.dev)
flags = adjs.sum(-1).gt(1e-5).to(dtype=torch.float32).to(config.dev)
# adjs now tensor of size num_levels x n x n
eval_x_b, eval_noise_adj_b, \
eval_node_flag_b, grad_log_q_noise_list = \
gen_list_of_data_single(xs, adjs,
flags, sigma_list, config)
eval_noise_adj_b_chunked = eval_noise_adj_b.chunk(len(sigma_list), dim=0)
eval_node_flag_b = flags.chunk(len(sigma_list), dim=0)
score = []
masks = []
for i, sigma in enumerate(sigma_list):
mask = generate_mask(eval_node_flag_b[i]).to(config.dev)
score_batch = model(A=eval_noise_adj_b_chunked[i].unsqueeze(0).to(config.dev), node_features=eval_noise_adj_b_chunked[i].to(config.dev), mask=mask.to(config.dev), noiselevel=sigma).to(config.dev)
score.append(score_batch)
masks.append(mask)
score = torch.cat(score,dim=0).squeeze(-1).to(config.dev)
masktens = torch.cat(masks,dim=0).to(config.dev)
loss += loss_func_kld(score, torch.stack(eval_noise_adj_b_chunked).to(config.dev), adjs.to(config.dev), torch.stack(grad_log_q_noise_list), sigma_list,sigma_ind_list, sigma_nontild_list, config, masktens)
return loss
def loss_func_kld(score_list, train_noise_adj_b, train_adj_b, grad_log_q_noise_list, sigma_list, sigma_ind_list,sigma_nontild_list, config, mask):
loss = 0.0
kl_loss = nn.KLDivLoss(reduction="none")
# Need to compute wether switch would go to on or to off (since model just predicts if we switched and not in which direction)
for i, adj in enumerate(train_noise_adj_b):
sigmatilde_t = sigma_list[i]
sigma_t = sigma_nontild_list[i]
sigmatilde_t1 = sigma_list[i] - sigma_list[i] / sigma_ind_list[i]
# Compute q which is the posterior on each matrix element but with knowing x0 and knowing xt which means we need both as arguments
mult1 = torch.where(train_noise_adj_b[i]>1/2, 1-sigma_t, sigma_t)
mult2 = torch.where(train_adj_b[i]>1/2, 1-sigmatilde_t1, sigmatilde_t1)
xor = torch.logical_xor(train_noise_adj_b[i], train_adj_b[i])
div = torch.where(xor>1/2, sigmatilde_t, 1-sigmatilde_t)
q = mult1 * mult2 / div
# Change score list based on if xt is 0 or 1
score_i=torch.where(train_noise_adj_b[i]>1/2, 1-torch.sigmoid(score_list[i]), torch.sigmoid(score_list[i]))
# score list represents p(x0|xt)
# Calculate posterior(sigmatilde_t,sigma_t,sigmatilde_t1,0,xt)
mult1 = torch.where(train_noise_adj_b[i] > 1/2, (1-sigma_t), sigma_t)
mult2 = torch.where(torch.zeros_like(train_adj_b[i])>1/2, 1-sigmatilde_t1, sigmatilde_t1)
xor = torch.logical_xor(train_noise_adj_b[i], torch.zeros_like(train_adj_b[i]))
div = torch.where(xor>1/2, sigmatilde_t, 1-sigmatilde_t)
p = ( 1 - score_i ) * mult1*mult2/div
# Calculate posterior(sigmatilde_t,sigma_t,sigmatilde_t1,1,xt)
mult1 = torch.where(train_noise_adj_b[i]>1/2, 1-sigma_t, sigma_t)
mult2 = torch.where(torch.ones_like(train_adj_b[i])>1/2, 1-sigmatilde_t1, sigmatilde_t1)
xor = torch.logical_xor(train_noise_adj_b[i], torch.ones_like(train_adj_b[i]))
div = torch.where(xor>1/2, sigmatilde_t, 1-sigmatilde_t)
p += ( score_i ) * mult1 * mult2/div
# p stands for probablity p(x0=1|xt=xt) now
score_list[i] = p
# This q is q(x0=1|xt=xt,x0=x0)
grad_log_q_noise_list[i] = q
score_inv = 1-score_list[i]
score_list_twoclass = torch.cat([score_list[i].unsqueeze(-1), score_inv.unsqueeze(-1)], -1)
grad_inv = 1 - grad_log_q_noise_list[i]
grad_log_q_noise_list_twoclass = torch.cat([grad_log_q_noise_list[i].unsqueeze(-1), grad_inv.unsqueeze(-1)], -1)
loss_matrix = kl_loss(torch.log(score_list_twoclass), grad_log_q_noise_list_twoclass).to(config.dev)
loss_matrix = loss_matrix.sum(-1)
loss_matrix = (loss_matrix+torch.transpose(loss_matrix, -2, -1))/2
loss_matrix = loss_matrix.to(config.dev) * mask[i].to(config.dev)
# Exclude the diagonal elements
loss_matrix = torch.triu(loss_matrix, diagonal=1) + torch.tril(loss_matrix, diagonal = -1)
loss += loss_matrix.sum()
return loss
def fit(model, optimizer, mcmc_sampler, train_dl, max_node_number, max_epoch=20, config=None,
save_interval=50,
sample_interval=1,
test_dl=None,
eval_set=None
):
# These parameters are set in order to do model selection based on the mmd and loss
best_score=np.inf
best_score_loss=np.inf
best_score_loss_eval=np.inf
# Create a subdir for storing the selected models
os.system(f"mkdir {config.model_save_dir}/best")
os.system(f"mkdir {config.model_save_dir}/bestloss")
# This is for storing the previous scores if we do not evaluate every epoch
lastmmd={}
for noisenum in config.num_levels:
lastmmd[noisenum]={"degree": 0, "cluster": 0, "orbit": 0.0}
# Set optimizer to zero slope
optimizer.zero_grad()
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=config.train.lr_dacey)
for epoch in range(max_epoch):
train_losses = []
train_loss_items = []
test_losses = []
test_loss_items = []
t_start = time.time()
model.train()
for train_adj_b, train_x_b in train_dl:
# Here sample the noiselevels randomly from th scheduled levels
# sigma_ind_list is a list of random indexes which defines which noiselevel to use for which graph
sigma_ind_list = np.random.random_integers(low=1,high=config.num_levels[0],size=train_adj_b.size(0))
# sigma_line represents the linear distributed noiselevels (in paper equivalent to the Beta_tildes or Beta_overlines), so the noise from x0 to xt
sigma_line=torch.linspace(0,1/2,config.num_levels[0]+1).tolist()
# sigma_list represents the randomly chosen Beta_overline for each graph
sigma_list = [sigma_line[i] for i in sigma_ind_list]
# sig_list represents the corresponding Betas (NOT beta_overlines), so noise from xt-1 to xt
sig_list = sigma_lin(sigma_line)
sigma_nontild_list = [sig_list[i] for i in sigma_ind_list]
train_adj_b = train_adj_b.to(config.dev)
train_x_b = train_x_b.to(config.dev)
train_node_flag_b = train_adj_b.sum(-1).gt(1e-5).to(dtype=torch.float32)
if isinstance(sigma_list, float):
sigma_list = [sigma_list]
train_x_b, train_noise_adj_b, \
train_node_flag_b, grad_log_q_noise_list = \
gen_list_of_data_single(train_x_b, train_adj_b,
train_node_flag_b, sigma_list, config)
# Now we have tensor of size B x N x N and grad_log_q_noise_list is list of B x Tensor( N x N )
optimizer.zero_grad()
train_noise_adj_b_chunked = train_noise_adj_b.chunk(len(sigma_list), dim=0)
train_node_flag_b = train_node_flag_b.chunk(len(sigma_list), dim=0)
score = []
masks = []
for i, sigma in enumerate(sigma_list):
mask = generate_mask(train_node_flag_b[i])
score_batch=model(A=train_noise_adj_b_chunked[i].unsqueeze(0).to(config.dev),node_features=train_noise_adj_b_chunked[i].to(config.dev),mask=mask.to(config.dev),noiselevel=sigma).to(config.dev)
score.append(score_batch)
masks.append(mask)
score=torch.cat(score,dim=0).squeeze(-1).to(config.dev)
masktens=torch.cat(masks,dim=0).to(config.dev)
# Compute loss for this epoch
loss = loss_func_kld(score, torch.stack(train_noise_adj_b_chunked), train_adj_b, torch.stack(grad_log_q_noise_list), sigma_list,sigma_ind_list,sigma_nontild_list, config, masktens)
# Take step on gradient
loss.backward()
optimizer.step()
train_losses.append(loss.detach().cpu().item())
scheduler.step(epoch)
# Do the same for test set to get testloss
model.eval()
for test_adj_b, test_x_b in test_dl:
test_adj_b = test_adj_b.to(config.dev)
test_x_b = test_x_b.to(config.dev)
test_node_flag_b = test_adj_b.sum(-1).gt(1e-5).to(dtype=torch.float32)
sigma_ind_list = np.random.random_integers(low=1,high=config.num_levels[0],size=test_adj_b.size(0))
sigma_line=np.linspace(0,1/2,config.num_levels[0]+1).tolist()
sigma_list = [sigma_line[i] for i in sigma_ind_list]
sig_list = sigma_lin(np.linspace(0,1/2,config.num_levels[0]+1).tolist())
sigma_nontild_list = [sig_list[i] for i in sigma_ind_list]
test_x_b, test_noise_adj_b, test_node_flag_b, grad_log_q_noise_list = \
gen_list_of_data_single(test_x_b, test_adj_b,
test_node_flag_b, sigma_list, config=config)
with torch.no_grad():
test_noise_adj_b_chunked = test_noise_adj_b.chunk(len(sigma_list), dim=0)
test_node_flag_b = test_node_flag_b.chunk(len(sigma_list), dim=0)
score=[]
masks=[]
for i, sigma in enumerate(sigma_list):
mask = generate_mask(test_node_flag_b[i])
score_batch=model(A=test_noise_adj_b_chunked[i].unsqueeze(0).to(config.dev),node_features=test_noise_adj_b_chunked[i].to(config.dev),mask=mask.to(config.dev),noiselevel=sigma).to(config.dev)
masks.append(mask)
score.append(score_batch)
score=torch.cat(score,dim=0).squeeze(-1).to(config.dev)
masktens=torch.cat(masks,dim=0).to(config.dev)
loss = loss_func_kld(score, torch.stack(test_noise_adj_b_chunked), test_adj_b, torch.stack(grad_log_q_noise_list), sigma_list,sigma_ind_list,sigma_nontild_list, config, masktens)
test_losses.append(loss.detach().cpu().item())
mean_train_loss = np.mean(train_losses)
mean_test_loss = np.mean(test_losses)
mean_train_loss_item = np.mean(train_loss_items, axis=0)
mean_train_loss_item_str = np.array2string(mean_train_loss_item, precision=2, separator="\t", prefix="\t")
mean_test_loss_item = np.mean(test_loss_items, axis=0)
mean_test_loss_item_str = np.array2string(mean_test_loss_item, precision=2, separator="\t", prefix="\t")
# Save the model at every save_interval
if epoch % save_interval == save_interval - 1:
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': mean_train_loss,
'test_loss': mean_test_loss,
'train_loss_item': mean_train_loss_item,
'test_loss_item': mean_test_loss_item,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"{config.dataset.name}.pth"))
# check if the model is the best so far in terms of trainloss
if mean_train_loss < best_score_loss:
best_score_loss = mean_train_loss
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': best_score,
'test_loss': mean_test_loss,
'train_loss_item': mean_train_loss_item,
'test_loss_item': mean_test_loss_item,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"bestloss/{config.dataset.name}.pth"))
logging.info(f'epoch: {epoch:03d}| time: {time.time() - t_start:.1f}s| '
f'train loss: {mean_train_loss:+.3e} | '
f'test loss: {mean_test_loss:+.3e} | ')
logging.info(f'epoch: {epoch:03d}| '
f'train loss i: {mean_train_loss_item_str} '
f'test loss i: {mean_test_loss_item_str} | ')
if epoch % sample_interval == sample_interval - 1 and config.eval_from < epoch:
with torch.no_grad():
wandb_dict = {}
results = sample_testing(config,f"{config.model_save_dir}",epoch,num_noiselevel,train_dl)
wandb_dict.update({f"degree_mmd_{num_noiselevel}": results["degree"],f"cluster_mmd_{num_noiselevel}": results["cluster"],f"orbit_mmd_{num_noiselevel}": results["orbit"],f"trainloss": mean_train_loss,f"testloss": mean_test_loss,f"evalloss": loss_eval})
lastmmd[num_noiselevel] = results
#wandb.log(wandb_dict)
logging.info(wandb_dict)
# check if the model is the best so far in terms of MMD on train data
if sum([results[key] if "likelyhood" not in key else 1-results[key] for key in results.keys()])<best_score:
best_score = sum([results[key] if "likelyhood" not in key else 1-results[key] for key in results.keys()])
to_save = {
'model': model.state_dict(),
'sigma_list': sigma_list,
'config': edict2dict(config),
'epoch': epoch,
'train_loss': best_score,
'test_loss': mean_test_loss,
'train_loss_item': mean_train_loss_item,
'test_loss_item': mean_test_loss_item,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict()
}
torch.save(to_save, os.path.join(config.model_save_dir,
f"best/{config.dataset.name}.pth"))
else:
wandb_dict = {}
for num_noiselevel in config.num_levels:
wandb_dict.update({f"degree_mmd_{num_noiselevel}": lastmmd[num_noiselevel]["degree"],f"cluster_mmd_{num_noiselevel}": lastmmd[num_noiselevel]["cluster"],"trainloss": mean_train_loss,"testloss": mean_test_loss,f"evalloss": loss_eval})
#wandb.log(wandb_dict)
logging.info(wandb_dict)
if epoch % config.finalinterval == config.finalinterval-1 and config.eval_from < epoch:
with torch.no_grad():
wandb_dict = {}
results = sample_main(config,f"{config.model_save_dir}/best", epoch, num_noiselevel)
wandb_dict.update({f"degree_mmd_{num_noiselevel}_best": results["degree"],f"cluster_mmd_{num_noiselevel}_best": results["cluster"],f"orbit_mmd_{num_noiselevel}_best": results["orbit"],f"testloss_best": mean_test_loss})
#wandb.log(wandb_dict)
logging.info(f"MMD of Epoch {epoch} with modelselection based on mmd performance: {wandb_dict}")
results = sample_main(config,f"{config.model_save_dir}", epoch, num_noiselevel)
wandb_dict.update({f"degree_mmd_{num_noiselevel}_main": results["degree"],f"cluster_mmd_{num_noiselevel}_main": results["cluster"],f"orbit_mmd_{num_noiselevel}_main": results["orbit"],f"testloss_best": mean_test_loss})
logging.info(f"MMD of Epoch {epoch} without modelselection: {wandb_dict}")
#wandb.log(wandb_dict)
results = sample_main(config,f"{config.model_save_dir}/bestloss", epoch, num_noiselevel)
wandb_dict.update({f"degree_mmd_{num_noiselevel}_bestloss": results["degree"],f"cluster_mmd_{num_noiselevel}_bestloss": results["cluster"],f"orbit_mmd_{num_noiselevel}_bestloss": results["orbit"],f"testloss_bestloss": best_score_loss})
#wandb.log(wandb_dict)
logging.info(f"MMD of Epoch {epoch} with modelselection based on trainloss: {wandb_dict}")
def train_main(config, args):
config.train.sigmas = np.linspace(0,0.5,config.num_levels[0]+1).tolist()
set_seed_and_logger(config, args)
train_dl, test_dl = load_data(config)
# mc_sampler = get_mc_sampler(config)
# Here, the `model` get `num_classes=len(sigma_list)`
model = get_score_model(config)
param_strings = []
max_string_len = 126
for name, param in model.named_parameters():
if param.requires_grad:
line = '.' * max(0, max_string_len - len(name) - len(str(param.size())))
param_strings.append(f"{name} {line} {param.size()}")
param_string = '\n'.join(param_strings)
logging.info(f"Parameters: \n{param_string}")
total_params = sum(p.numel() for p in model.parameters())
total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
logging.info(f"Parameters Count: {total_params}, Trainable: {total_trainable_params}")
optimizer = optim.Adam(model.parameters(),
lr=config.train.lr_init,
betas=(0.9, 0.999), eps=1e-8,
weight_decay=config.train.weight_decay)
#wandb.login(key="")
#wandb.init(project="", entity="",config=config)
sigma_list = len(config.train.sigmas)
# Select 32 random Graphs from the dataloader
train_graph_list, test_graph_list = load_data(config, get_graph_list=True)
# rand_idx = np.random.randint(0, len(train_graph_list), 32)
rand_idx = np.random.randint(0, len(train_graph_list), 64)
eval_graph_list = [train_graph_list[i] for i in rand_idx]
eval_adjs, eval_x = graphs_to_tensor(config, eval_graph_list)
eval_set = list(zip(eval_adjs, eval_x))
fit(model, optimizer, None, train_dl,
max_node_number=config.dataset.max_node_num,
max_epoch=config.train.max_epoch,
config=config,
save_interval=config.train.save_interval,
sample_interval=config.train.sample_interval,
sigma_length=sigma_list,
sample_from_sigma_delta=0.0,
test_dl=test_dl,
eval_set=eval_set
)
if __name__ == "__main__":
# torch.autograd.set_detect_anomaly(True)
args = parse_arguments('train_ego_small.yaml')
ori_config_dict = get_config(args)
config_dict = edict(ori_config_dict.copy())
process_config(config_dict)
config_dict.model.name = "ppgn"
train_main(config_dict, args)