-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_ppgn_vlb.py
294 lines (236 loc) · 14.6 KB
/
sample_ppgn_vlb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import logging
import pickle
import os
from easydict import EasyDict as edict
import numpy as np
import torch
from evaluation.stats import eval_torch_batch, adjs_to_graphs, eval_graph_list, eval_acc_sbm_graph
from utils.arg_helper import mkdir, set_seed, load_data, graphs_to_tensor, load_model, parse_arguments, \
get_config
from utils.graph_utils import discretenoise, generate_mask, discretenoise_balanced
from utils.loading_utils import get_mc_sampler, eval_sample_batch, prepare_test_model_train
from utils.visual_utils import plot_graphs_list, plot_inter_graphs, plot_inter_graphs_list
def posterior(sigmatilde_t, sigma_t, sigmatilde_t1, x0, xt):
if xt < 0.01 and x0 < 0.01:
return sigmatilde_t1 * sigma_t / (1-sigmatilde_t)
elif xt > 0.99 and x0 < 0.01:
return sigmatilde_t1 * (1 - sigma_t) / (sigmatilde_t)
elif xt > 0.99 and x0 > 0.99:
return (1 - sigmatilde_t1) * (1 - sigma_t) / (1-sigmatilde_t)
if xt < 0.01 and x0 > 0.99:
return (1 - sigmatilde_t1) * sigma_t / (sigmatilde_t)
def sigma_lin(sigma_list):
sigmas = []
for g,sigma in enumerate(sigma_list):
if sigma < 1.0e-5:
sigmas.append(0.0)
continue
sigmas.append(((1 - sigma) - (1 - sigma_list[g-1])) / (1 - 2 * (1 - sigma_list[g - 1])))
return sigmas
def sample_main(config, modellink, epoch, noise_num):
train_graph_list, test_graph_list = load_data(config, get_graph_list=True)
models = prepare_test_model_train(config, modellink)
max_node_number = config.dataset.max_node_num
test_batch_size = config.test.batch_size
def gen_init_data(batch_size):
rand_idx = np.random.randint(0, len(train_graph_list), batch_size)
graph_list = [train_graph_list[i] for i in rand_idx]
base_adjs, base_x = graphs_to_tensor(config, graph_list)
base_adjs, base_x = base_adjs.to(config.dev), base_x.to(config.dev)
node_flags = base_adjs.sum(-1).gt(1e-5).to(dtype=torch.float32)
# Create a matrix with p=1/2 elements at all positions Aij where i and j not masked by node_flagij=0:
bernoulli_adj = torch.zeros(batch_size, max_node_number, max_node_number).to(config.dev)
for k, matrix in enumerate(base_adjs):
for i,row in enumerate(matrix):
for j,col in enumerate(row):
if 1/2 < node_flags[k][i] and 1/2 < node_flags[k][j]:
bernoulli_adj[k,i,j] = 1/2
noise_upper = torch.bernoulli(bernoulli_adj).triu(diagonal=1)
noise_lower = noise_upper.transpose(-1, -2)
initialmatrix = noise_lower + noise_upper
return initialmatrix, base_x, node_flags
# Returns initialmatrix = tensor of size batchsize x N x N
file, sigma_list, model_params = models[0]
model = load_model(*model_params)
sigma_tens = torch.linspace(0,1/2,noise_num+1)
sigma_list = sigma_tens.tolist()
sigma_list.sort()
sigma_list_nontilde = sigma_lin(sigma_list)
def add_bernoulli(flags, init_adjs, noiselevel):
if config.noisetype == "balanced":
init_adjs, noise_added = discretenoise_balanced(init_adjs, flags, noiselevel, config)
else:
init_adjs, noise_added = discretenoise(init_adjs, flags, noiselevel, config)
return init_adjs
def take_step(noise_func, flags, init_adjs, noiselevel, noiselevel_nontilde, noiselevel_t1):
mask=generate_mask(flags).to(config.dev)
noise_unnormal = noise_func(A=init_adjs.to(config.dev), feat=None, mask=mask.to(config.dev), noise=noiselevel).to(config.dev)
noise_unnormal = noise_unnormal.squeeze(-1)
noise_rel = torch.sigmoid(noise_unnormal)
noise_rel = (noise_rel+torch.transpose(noise_rel, -2, -1))/2
# Here noise_rel = p(xo_switched | xt)
sigmatilde_t = noiselevel
sigma_t = noiselevel_nontilde
sigmatilde_t1 = noiselevel_t1
score_i = torch.where(init_adjs>1/2, 1-noise_rel, noise_rel)
# Calculate posterior(sigmatilde_t,sigma_t,sigmatilde_t1,0,xt)
mult1 = torch.where(init_adjs>1/2, (1-sigma_t), sigma_t)
mult2 = torch.where(torch.zeros_like(init_adjs)>1/2, 1-sigmatilde_t1, sigmatilde_t1)
xor = torch.logical_xor(init_adjs, torch.zeros_like(init_adjs))
div = torch.where(xor>1/2,sigmatilde_t,1-sigmatilde_t)
p = ( 1 - score_i ) * mult1 * mult2 / div
# Calculate posterior(sigmatilde_t,sigma_t,sigmatilde_t1,1,xt)
mult1 = torch.where(init_adjs>1/2, (1-sigma_t), sigma_t)
mult2 = torch.where(torch.ones_like(init_adjs)>1/2, 1-sigmatilde_t1, sigmatilde_t1)
xor = torch.logical_xor(init_adjs, torch.ones_like(init_adjs))
div = torch.where(xor>1/2, sigmatilde_t, 1-sigmatilde_t)
p += ( score_i ) * mult1 * mult2/div
init_adjs = (p + p.transpose(-2,-1))/2
# p stands now for probablity p(x0=1|xt=xt)
# Mask, sample, and make symmetrical:
init_adjs = init_adjs * mask
init_adjs = torch.bernoulli(init_adjs).to(config.dev)
new_adjs = torch.triu(init_adjs, diagonal=1) + torch.triu(init_adjs, diagonal=1).transpose(-2,-1)
return new_adjs
def run_sample(eval_len=10, methods=None):
gen_graph_list = []
with torch.no_grad():
while len(gen_graph_list) < eval_len:
count=0
init_adjs, init_x, flags = gen_init_data(batch_size=test_batch_size)
# Uncomment this if you wish to track the graphs in between the noiselevels
# mult_stages = [adjs_to_graphs(init_adjs.detach().cpu().numpy())]
# mult_stages_flags = flags[-test_batch_size*(0+1): len(flags)-(test_batch_size*(0))]
# Only move to len-2 since then count=len-2 and sigmalist(len-len+2-1)=sigmalist(1) so the 0 element is not used!
while count < len(sigma_list)-1:
noiselevel = sigma_list[len(sigma_list)-count-1]
noiselevel_nontilde = sigma_list_nontilde[len(sigma_list)-count-1]
noiselevel_t1 = sigma_list[len(sigma_list)-count-2]
init_adjs = take_step(lambda feat, A, mask, noise: model(feat, A, mask, noise), flags=flags, init_adjs=init_adjs, noiselevel=noiselevel, noiselevel_nontilde=noiselevel_nontilde, noiselevel_t1=noiselevel_t1)
count = count + 1
# Uncomment this if you wish to track the graphs in between the noiselevels
# mult_stages.append(adjs_to_graphs(init_adjs.detach().cpu().numpy()))
# mult_stages_flags = torch.cat((mult_stages_flags, flags[-test_batch_size*(count): len(flags)-(test_batch_size*(count-1))]),0)
gen_graph_list.extend(adjs_to_graphs(init_adjs.detach().cpu().numpy()))
# Plot a set of the predicted graphs
pic_title = f'{file.split("/")[-1]}_final_sample_{epoch}_{noise_num}.pdf'
plot_graphs_list(graphs=gen_graph_list, title=pic_title, save_dir=config.save_dir)
# Uncomment this if you wish to print the graphs in between the noiselevels
# plot_inter_graphs_list(graphs=mult_stages, flags=mult_stages_flags, title='intermediate', save_dir=config.save_dir, nr_to_analyze=steps_to_log)
# Calculate mmd scores
result_dict = eval_graph_list(test_graph_list, gen_graph_list, methods=methods)
# Calculate mmd scores for likelyhood in sbm (deprecated)
if "sbm" in config.dataset.name:
result_dict["likelyhood"] = eval_acc_sbm_graph(gen_graph_list, p_intra=0.85, p_inter=0.046875, strict=False, is_parallel=False)
return result_dict, gen_graph_list
result_dict, gen_graph_list = run_sample(eval_len=config.samplesize)
return result_dict
# Here the same as above but now we use traindata and we compare to traindata for the mmd scores (only used for model selection)
def sample_testing(config, modellink, epoch, noise_num, train_dl):
# Prepare our traindata received from the training script to be compatible with our sampling script
train_graph_list_adj = []
train_graph_list_x = []
train_graph_list = []
for train_adj_b, train_x_b in train_dl:
for adj, x in zip(train_adj_b, train_x_b):
train_graph_list_adj.append(adj.clone().detach())
train_graph_list_x.append(x.clone().detach())
train_graph_list.extend(adjs_to_graphs(train_adj_b.detach().cpu().numpy()))
train_graph_list_adj = torch.stack(train_graph_list_adj)
train_graph_list_x = torch.stack(train_graph_list_x)
models = prepare_test_model_train(config,modellink)
max_node_number = config.dataset.max_node_num
test_batch_size = config.test.batch_size
def gen_init_data(batch_size):
rand_idx = np.random.randint(0, len(train_graph_list), batch_size)
base_adjs, base_x = [train_graph_list_adj[i] for i in rand_idx], [train_graph_list_x[i] for i in rand_idx]
base_adjs, base_x = torch.stack(base_adjs), torch.stack(base_x)
base_adjs, base_x = base_adjs.to(config.dev), base_x.to(config.dev)
node_flags = base_adjs.sum(-1).gt(1e-5).to(dtype=torch.float32)
# Create a matrix with p=1/2 elements at all positions Aij where i and j not masked by node_flagij=0:
bernoulli_adj = torch.zeros(batch_size, max_node_number, max_node_number).to(config.dev)
for k, matrix in enumerate(base_adjs):
for i,row in enumerate(matrix):
for j, col in enumerate(row):
if 1/2 < node_flags[k][i] and 1/2 < node_flags[k][j]:
bernoulli_adj[k,i,j] = 1/2
noise_upper = torch.bernoulli(bernoulli_adj).triu(diagonal=1)
noise_lower = noise_upper.transpose(-1, -2)
initialmatrix = noise_lower + noise_upper
return initialmatrix, base_x, node_flags
# Returns initialmatrix = tensor of size batchsize x N x N
file, sigma_list, model_params = models[0]
model = load_model(*model_params)
sigma_tens = torch.linspace(0,1/2,noise_num+1)
sigma_list = sigma_tens.tolist()
sigma_list.sort()
sigma_list_nontilde = sigma_lin(sigma_list)
def add_bernoulli(flags, init_adjs, noiselevel):
init_adjs, noise_added = discretenoise(init_adjs, flags, noiselevel, config)
return init_adjs
# Receives the last levels prediction for x_0, adds enough noise to get to noiselevel x_t and then returns prediction for x_0
def take_step(noise_func, flags, init_adjs, noiselevel, noiselevel_nontilde, noiselevel_t1):
mask=generate_mask(flags).to(config.dev)
noise_unnormal = noise_func(A=init_adjs.to(config.dev), feat=None,mask=mask.to(config.dev), noise=noiselevel).to(config.dev)
noise_unnormal = noise_unnormal.squeeze(-1)
noise_rel = torch.sigmoid(noise_unnormal)
noise_rel = (noise_rel + torch.transpose(noise_rel,-2,-1)) / 2
# here now noise_rel = p(xo_switched | xt)
sigmatilde_t = noiselevel
sigma_t = noiselevel_nontilde
sigmatilde_t1 = noiselevel_t1
score_i = torch.where(init_adjs>1/2, 1-noise_rel, noise_rel)
# Calculate posterior(sigmatilde_t,sigma_t,sigmatilde_t1,0,xt)
mult1 = torch.where(init_adjs>1/2, (1-sigma_t), sigma_t)
mult2 = torch.where(torch.zeros_like(init_adjs)>1/2, 1-sigmatilde_t1, sigmatilde_t1)
xor = torch.logical_xor(init_adjs, torch.zeros_like(init_adjs))
div = torch.where(xor>1/2, sigmatilde_t, 1-sigmatilde_t)
p = ( 1 - score_i ) * mult1 * mult2 / div
# Calculate posterior(sigmatilde_t,sigma_t,sigmatilde_t1,1,xt)
mult1 = torch.where(init_adjs>1/2, (1-sigma_t), sigma_t)
mult2 = torch.where(torch.ones_like(init_adjs)>1/2, 1-sigmatilde_t1, sigmatilde_t1)
xor = torch.logical_xor(init_adjs, torch.ones_like(init_adjs))
div = torch.where(xor>1/2,sigmatilde_t, 1-sigmatilde_t)
p += ( score_i ) * mult1 * mult2/div
init_adjs = (p + p.transpose(-2,-1))/2
# p stands now for probablity p(x0=1|xt=xt)
# Mask and sample
init_adjs = init_adjs * mask
init_adjs = torch.bernoulli(init_adjs).to(config.dev)
new_adjs = torch.triu(init_adjs,diagonal=1) + torch.triu(init_adjs,diagonal=1).transpose(-2,-1)
return new_adjs
def run_sample(eval_len=10, methods=None):
gen_graph_list = []
with torch.no_grad():
while len(gen_graph_list) < eval_len:
count=0
init_adjs, init_x, flags = gen_init_data(batch_size = test_batch_size)
# Uncomment this if you wish to observe the intermediate graphs
# mult_stages = [adjs_to_graphs(init_adjs.detach().cpu().numpy())]
# mult_stages_flags = flags[-test_batch_size*(0+1): len(flags)-(test_batch_size*(0))]
while count < len(sigma_list)-1:
noiselevel = sigma_list[len(sigma_list)-count-1]
noiselevel_nontilde = sigma_list_nontilde[len(sigma_list)-count-1]
noiselevel_t1 = sigma_list[len(sigma_list)-count-2]
init_adjs = take_step(lambda feat, A, mask, noise: model(feat, A, mask, noise), flags=flags, init_adjs=init_adjs, noiselevel=noiselevel, noiselevel_nontilde=noiselevel_nontilde, noiselevel_t1=noiselevel_t1)
count = count + 1
# Uncomment this if you wish to observe the intermediate graphs
# mult_stages.append(adjs_to_graphs(init_adjs.detach().cpu().numpy()))
# mult_stages_flags = torch.cat((mult_stages_flags, flags[-test_batch_size*(count): len(flags)-(test_batch_size*(count-1))]),0)
gen_graph_list.extend(adjs_to_graphs(init_adjs.detach().cpu().numpy()))
# Plot selection of generated graphs
pic_title = f'{file.split("/")[-1]}_final_sample_{epoch}_{noise_num}.pdf'
plot_graphs_list(graphs=gen_graph_list, title=pic_title, save_dir=config.save_dir)
# Uncomment the next line if you wish to plot the intermediate graphs
# plot_inter_graphs_list(graphs=mult_stages, flags=mult_stages_flags, title='intermediate', save_dir=config.save_dir, nr_to_analyze=steps_to_log)
# Evaluate mmd compared to train set
result_dict = eval_graph_list(train_graph_list, gen_graph_list, methods=methods)
if "sbm" in config.dataset.name:
result_dict["likelyhood"] = eval_acc_sbm_graph(gen_graph_list, p_intra=0.85, p_inter=0.046875, strict=False, is_parallel=False)
return result_dict, gen_graph_list
result_dict, gen_graph_list = run_sample(eval_len=256)
return result_dict
if __name__ == "__main__":
args = parse_arguments('sample_com_small_ddpm_16.yaml')
config_dict = get_config(args)
sample_main(config_dict, args)