-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathafsmo.f
2603 lines (2507 loc) · 80.6 KB
/
afsmo.f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
C +
C PROGRAM AIRSMO (AIRFOIL SMOOTHER)
C ------------------------------------------------------------------
C PURPOSE - SMOOTH A TABLE AF AIRFOIL COORDINATES IN PREPARATION FOR
C SUBMISSION TO A AERODYNAMIC PREDICTION CODE.
C AUTHORS - HARRY L. MORGAN, NASA LANGLEY RESEARCH CENTER
C MICHAEL SELIG, U. ILLINOIS
C RALPH L. CARMICHAEL, PUBLIC DOMAIN AERONAUTICAL SOFTWARE
C REVISION HISTORY
C DATE VERS PERSON STATEMENT OF CHANGES
C 1986 1.0 HLM ORIGINAL CODING FROM NASA TM 84666
C 2000 1.1 MSS USED BY MICHAEL SELIG AT U. ILLINOIS WITH MINOR MODS
C 2021JUN10 1.2 RLC PDAS VERSION CREATED FROM AFSMO_2015.F FROM SELIG
C 2021JUN13 1.21 RLC SUBROUTINE ARRAY DIMENSION OF (1) -> (*)
C 2021JUN13 1.22 RLC ADDED PADDING TO MAKE COMMON BLOCKS UNIFORM
C 2021JUN14 1.23 RLC REPLACED CONSTANT -1 IN CALL TO CSDS WITH VARIABLE
C 2021JUN24 1.24 RLC MADE NEW PLOT FILES JGNU1,JGNU2,JGNU3
C 2021JUN27 1.25 RLC WRITE SQRT(CURVATURE) TO PLOT FILE
C 2021JUL13 1.26 RLC REMOVED PAGE EJECT FROM 1ST AND LAST PAGES
C 2021SEP30 1.3 RLC ADDED BLANK LINE IN THREE PLACES TO HELP POST PROCESSING
C REF: NASA TM 84666 BY HARRY MORGAN
C*DECK AIRSMO
PROGRAM AIRSMO
C
C THIS PROGRAM PRESENTS A TECHNIQUE FOR SMOOTHING AIRFOIL
C COORDINATES USING LEAST SQUARES POLYNOMIAL AND CUBIC SPLINE
C METHODS. THIS IS FTN5 VERSION (JULY 1986).
C
C CODED BY -- HARRY MORGAN NASA/LARC/AAD/SAB 1992
C
C CALLS INPUT,SMOXY,PCARD,CAMTK,INTP
IMPLICIT REAL*8(A-H,O-Z)
C
CHARACTER IFILE*30, TITLE(8)*10
C
DIMENSION XINT(100), X(200), Y(200), W(200), YSMO(200),
1YPS(200), YPPS(202), THETA(202)
C
COMMON /HLM/ DUMMX(2000)
C
COMMON /SMY/ DUMMY(2130)
C
COMMON /BLK1/ PI,PI2,RAD,CONS
C
COMMON /INOUT/ JREAD,JWRITE,IPRINT,DOUT,SMRY
JREAD=3
JWRITE=4
IPRINT=1
DOUT = 30
SMRY = 31
C
C OPEN FILES
C
OPEN (5)
OPEN (6)
CALL GET_COMMAND_ARGUMENT(1,IFILE)
OPEN (UNIT=JREAD,FILE=IFILE,STATUS='OLD',ACTION='READ')
OPEN(UNIT=4, FILE='afsmo.out', STATUS='REPLACE',ACTION='WRITE')
OPEN(UNIT=1, FILE='afsmo.pch', STATUS='REPLACE')
OPEN(UNIT=30, FILE='afsmo.dat', STATUS='REPLACE')
OPEN(UNIT=31, FILE='afsmo.smr', STATUS='REPLACE')
C
C INITIALIZE PROGRAM CONSTANTS
C
PI=DACOS(-1.D00)
PI2=PI/2.
RAD=180./PI
CONS=1./(1.+DATAN(DSINH(PI2)))
EPS=1.D-6
DF=1.D-4
REWIND 1
C
C READ INPUT DATA
C
1 CALL INPUT (TITLE,ITER,IPLOT,IPUNCH,IOP,ICAMTK,INTR,YLTE,YNOSE,YUT
1E,NINT,XINT,CNEW,NP,X,Y,W,THETA,YPS,YPPS,NOSE,CHORD,IERR)
WRITE(*,*) 'INPUT COMPLETED WITH IERR= ', IERR
IF (IERR-1) 2,1,5
C
C SMOOTH AIRFOIL COORDINATES
C
2 CALL SMOXY (THETA,X,Y,W,YSMO,YPS,YPPS,NP,NOSE,YLTE,YNOSE,YUTE,EPS,
1 DF,ITER,TITLE,IOP,IERR)
WRITE(*,*) 'SMOOTHING COMPLETED WITH IERR= ',IERR
IF (IERR.NE.0) GO TO 1
C
C PUNCH OUTPUT DATA
C
IF (IPUNCH.GE.1.AND.IPUNCH.LE.4) THEN
CALL PCARD (IPUNCH,X,Y,W,THETA,YSMO,YPS,
X YPPS,NOSE,NP,CHORD,TITLE)
WRITE(*,*) 'PUNCH OUT COMPLETED'
END IF
C COMPUTE THICKNESS AND CAMBER DISTRIBUTION
C
IF (ICAMTK.EQ.1) THEN
CALL CAMTK (THETA,YSMO,YPPS,NOSE,NP,EPS,KPLOT,IPUNCH,TITLE)
WRITE(*,*) 'CAMBER AND THICKNESS COMPLETED'
END IF
C INTERPOLATE NEW COORDINATES
C
IF (INTR.GT.0) THEN
CALL INTP (THETA,X,YSMO,YPPS,NP,NOSE,CHORD,TITLE,
X NINT,XINT,CNEW,INTR,IPUNCH)
WRITE(*,*) 'NEW COORDINATES INTERPOLATED'
END IF
C RETURN AND READ NEXT CASE
C
GO TO 1
C
5 WRITE (JWRITE,6)
ENDFILE 1
REWIND 1
ENDFILE JWRITE
REWIND JWRITE
WRITE(*,*) 'ALL CASES COMPLETED'
STOP
C
6 FORMAT (////48X,"-- THE LAST CASE HAS BEEN PROCESSED --")
END PROGRAM AIRSMO
C*DECK INTER
SUBROUTINE INTER (XINT,YINT,N,X,Y,JSTART,JEND,ICD)
C
C INTERPOLATION ROUTINE
C
C ROUTINE SOURCE -- NORTH AMERICAN ROCKWELL L. A. DIVISION 1973
C
C ICD=0 WEIGHTING METHOD USED
C ICD=1 LINEAR INTERPOLATION
C
C CALLED BY BADPT AND SMOXY; NO CALLS
IMPLICIT REAL*8(A-H,O-Z)
C
DIMENSION X(N), Y(N)
C
C CHECK TO SEE IF XINT IS OUTSIDE BOUNDS OF X-ARRAY
C
JEND=JSTART
IF (JSTART.EQ.N) GO TO 12
C CHECK TO SEE IF X ARRAY IS INCREASING OR DECREASING
SGN=1.
IF (X(N).LT.X(JSTART)) SGN=-1.
D1=SGN*(XINT-X(N))
IF (D1.GE.0.0) GO TO 12
D1=SGN*(XINT-X(JSTART))
IF (D1.LE.0.0) GO TO 13
IF (ICD.EQ.1) GO TO 14
C WEIGHTING METHOD REQUIRES AT LEAST 4 VALUES IN X AND Y ARRAYS
IF (N.LT.4) GO TO 14
C
C WEIGHTING METHOD
C
C DETERMINE X-ARRAY INDICES FOR TWO POINTS FORWARD (J,L) AND TWO
C POINTS AFT (K,M) OF XINT
DO 1 L=JSTART,N
J=L
D1=SGN*(X(J)-XINT)
IF (D1) 1,2,3
1 JEND=J
2 YINT=Y(J)
RETURN
3 IF (J.LE.2) GO TO 5
IF (J.EQ.N) GO TO 4
JJ=3
GO TO 6
4 JJ=2
J=N-1
GO TO 6
5 JJ=1
J=3
6 K=J-1
M=J-2
L=J+1
C INTERPOLATE A YINT VALUE (YSL) BY FITTING A STRAIGHT LINE
C BETWEEN K AND J
D1=XINT-X(M)
D2=XINT-X(K)
D3=XINT-X(J)
D=(XINT-X(K))/(X(J)-X(K))
YSL=D*Y(J)+(1.0-D)*Y(K)
C INTERPOLATE A YINT VALUE (YP1) BY FITTING A QUADRATIC BETWEEN
C M, K, AND J
C1=D3*D2/((X(M)-X(K))*(X(M)-X(J)))
C2=D1*D3/((X(K)-X(M))*(X(K)-X(J)))
C3=D2*D1/((X(J)-X(M))*(X(J)-X(K)))
YP1=C1*Y(M)+C2*Y(K)+C3*Y(J)
C INTERPOLATE A YINT VALUE (YP2) BY FITTING A QUADRATIC BETWEEN
C K, J, AND L
D4=XINT-X(L)
C1=D4*D3/((X(K)-X(J))*(X(K)-X(L)))
C2=D2*D4/((X(J)-X(K))*(X(J)-X(L)))
C3=D3*D2/((X(L)-X(K))*(X(L)-X(J)))
YP2=C1*Y(K)+C2*Y(J)+C3*Y(L)
C
IF (JJ-2) 7,8,9
7 YP2=YP1
D=(XINT-X(1))/(X(2)-X(1))
YSL=D*Y(2)+(1.0-D)*Y(1)
GO TO 9
8 YP1=YP2
D=(XINT-X(N-1))/(X(N)-X(N-1))
YSL=D*Y(N)+(1.0-D)*Y(N-1)
C COMPUTE DEVIATION BETWEEN LINEAR AND QUADRATIC YINT VALUES
9 DEV1=DABS(YP1-YSL)
DEV2=DABS(YP2-YSL)
IF (DEV1+DEV2) 10,10,11
10 YINT=YSL
RETURN
C COMPUTE WEIGHTING FACTORS
11 WT2=(DEV1*D)/(DEV1*D+(1.0-D)*DEV2)
WT1=1.0-WT2
C COMPUTE FINAL YINT
YINT=WT2*YP2+WT1*YP1
RETURN
12 YINT=Y(N)
JEND=N
RETURN
13 YINT=Y(JSTART)
RETURN
C
C LINEAR INTERPOLATION METHOD
C
14 DO 15 L=JSTART,N
J=L
D1=SGN*(X(J)-XINT)
IF (D1) 15,2,16
15 JEND=J
16 YINT=Y(J-1)+(Y(J)-Y(J-1))*(XINT-X(J-1))/(X(J)-X(J-1))
RETURN
END SUBROUTINE INTER
C*DECK INPUT
SUBROUTINE INPUT (TITLE,ITER,IPLOT,IPUNCH,IOP,ICAMTK,INTR,YLTE,YNO
1SE,YUTE,NINT,XINT,CNEW,NP,X,Y,W,THETA,YPS,YPPS,NOSE,CHORD,IERR)
C
C ROUTINE TO READ INPUT DATA FOR AIRFOIL SMOOTHING PROGRAM
C
C CALLED BY MAIN PROGRAM CALLS TRNSRT, BADPT(TWICE)
C CODED BY -- HARRY MORGAN NASA/LARC/TAD/AAB 1982
C
C***********************************************************************
C* *
C* DESCRIPTION OF INPUT CARDS FOR SMOOTHING PROGRAM *
C* *
C* CARD NUMBER DESCRIPTION *
C* *
C*.....................................................................*
C* 1 FORMAT(8A10) *
C* TITLE CARD *
C*.....................................................................*
C* 2 FORMAT(8F10.0) *
C* ITER - MAXIMUM NUMBER OF SMOOTHING ITERATIONS *
C* IPLOT - PLOTTING OPTION *
C* 0 - NO PLOTS *
C* 1 - PLOT SMOOTHED AND UNSMOOTHED Y/C, SMOOTHED *
C* YPS, AND SMOOTHED YPPS VS THETA *
C* 2 - PLOT SMOOTHED AND UNSMOOTHED Y/C VS X/C *
C* 3 - PLOT SMOOTHED CURVATURE VS THETA *
C* 4 - PLOT CAMBER AND THICKNESS DISTRIBUTION *
C* 5 - PLOT OPTIONS 1 AND 2 *
C* 6 - PLOT OPTIONS 1 AND 3 *
C* 7 - PLOT OPTIONS 1, 2, AND 3 *
C* 8 - PLOT OPTIONS 1 AND 4 *
C* 9 - PLOT OPTIONS 1, 2, AND 4 *
C* 10 - PLOT OPTIONS 1, 2, 3, AND 4 *
C* IPUNCH - PUNCH OUTPUT OPTION *
C* 0 - NO PUNCHED OUTPUT *
C* 1 - SMOOTHED (X,Y,W) PUNCHED *
C* 2 - SMOOTHED (THETA,Y/C,W) PUNCHED *
C* 3 - SMOOTHED (THETA,YPS,W) PUNCHED (YLTE, *
C* YNOSE, AND YUTE ALSO PUNCHED) *
C* 4 - SMOOTHED (THETA,YPPS,W) PUNCHED (YLTE, *
C* YNOSE, AND YUTE ALSO PUNCHED) *
C* 5 - THICKNESS AND CAMBER DISTRIBUTION (X/C, *
C* Y/C, T/C/2, AND SLOPE) PUNCHED *
C* 6 - INTERPOLATED COORDINATES PUNCHED *
C* IOP - INPUT DATA OPTION *
C* 0 - (X,Y,W) INPUT *
C* 1 - (THETA,Y/C,W) INPUT *
C* 2 - (THETA,YPS,W) INPUT *
C* 3 - (THETA,YPPS,W) INPUT *
C* ICAMTK - THICKNESS AND CAMBER DISTRIBUTION OPTION *
C* 0 - DO NOT COMPUTE THICKNESS AND CAMBER *
C* 1 - COMPUTE THICKNESS AND CAMBER *
C* IBAD - BAD COORDINATE CHECK OPTION *
C* 0 - DO NOT CHECK FOR BAD COORDINATES *
C* 1 - CHECK FOR BAD COORDINATES *
C* ITRN - INPUT COORDINATE TRANSLATION AND ROTATION OPTION *
C* 0 - DO NOT TRANSLATE AND ROTATE *
C* 1 - TRANSLATE AND ROTATE SO THAT X-AXIS *
C* CORRESPONDS TO THE LONGEST CHORDLINE *
C* INTR - COORDINATE INTERPOLATION OPTION *
C* 0 - NO INTERPOLATION DESIRED *
C* 1 - INTERPOLATE NEW COORDINATES USING STANDARD 57 *
C* X/C COORDINATES DEFINED IN SUBROUTINE INTP *
C* 2 - INTERPOLATE NEW COORDINATES AT INPUT X/C *
C* VALUES (0.0 .GE. X/C .LE. 1.0) *
C*.....................................................................*
C* MSS033195 TOOK OUT FORMATTED READ
C* 3 FORMAT(10.0) *
C* NU - NUMBER OF UPPER SURFACE INPUT COORDINATES *
C*.....................................................................*
C* MSS033195 TOOK OUT FORMATTED READ, WL, WU DISABLED IN PROCESS
C* 4 FORMAT(3F10.3) *
C* XU,YU,WU - UPPER SURFACE INPUT COORDINATES AND WEIGHTING *
C* (NU CARDS ARE INPUT) *
C* IF IOP=0, XU=X AND YU=Y COORDINATES *
C* IF IOP=1, XU=THETA AND YU=Y/C *
C* IF IOP=2, XU=THETA AND YU=YPS *
C* IF IOP=3, XU=THETA AND YU=YPPS *
C* FOR ALL IOP, WU=WEIGHTING FACTOR *
C*.....................................................................*
C* MSS033195 TOOK OUT FORMATTED READ
C* 5 FORMAT(10.0) *
C* NL - NUMBER OF LOWER SURFACE INPUT COORDINATES *
C*.....................................................................*
C* MSS033195 TOOK OUT FORMATTED READ, WL, WU DISABLED IN PROCESS
C* 6 FORMAT(3F10.3) *
C* XL,YL,WL - LOWER SURFACE INPUT COORDINATES AND WEIGHTING *
C* (NL CARDS ARE INPUT) *
C* IF IOP=0, XL=X AND YL=Y COORDINATES *
C* IF IOP=1, XL=THETA AND YL=Y/C *
C* IF IOP=2, XL=THETA AND YL=YPS *
C* IF IOP=3, XL=THETA AND YL=YPPS *
C* FOR ALL IOP, WL=WEIGHTING FACTOR *
C*.....................................................................*
C* 7 FORMAT(3F10.0) SKIP IF IOP=0 OR 1 *
C* YLTE,YNOSE,YUTE - LOWER SURFACE TRAILING-EDGE, NOSE, *
C* AND UPPER SURFACE TRAILING-EDGE *
C* Y/C COORDINATES *
C*.....................................................................*
C* MSS 033195 TOOK OUT FORMATTED READ
C* 8 FORMAT(F10.0) SKIP IF INTR=0 OR 1 *
C* NINT - NUMBER OF INTERPOLATION X/C COORDINATES *
C*.....................................................................*
C* MSS 033195
C* 9 FORMAT(*) SKIP IF INTR=0 OR 1 *
C* XINT - INTERPOLATION X/C COORDINATES (NINT VALUES INPUT) *
C*.....................................................................*
C* MSS 033195
C* 10 FORMAT(*) SKIP IF INTR=0 OR 1 *
C* CNEW - DESIRED CHORD LENGTH OF INTERPOLATED COORDINATES *
C*.....................................................................*
C* *
C* RESTRICTIONS: *
C* ITER NOT GREATER THAN 300 *
C* NU OR NL NOT GREATER THAN 100 *
C* NINT NOT GREATER THAN 100 *
C* *
C***********************************************************************
C
IMPLICIT REAL*8(A-H,O-Z)
C
CHARACTER TITLE(8)*10
C
DIMENSION VAR(8), XINT(*), X(*), Y(*), W(*), THETA(*), YPS(*),
1 YPPS(*)
C
COMMON /SMY/ XU(100),YU(100),WU(100),XL(100),YL(100),WL(100),
X DUMMY2(1530)
C
COMMON /BLK1/ PI,PI2,RAD,CONS
C
COMMON /INOUT/ JREAD,JWRITE,IPRINT,DOUT,SMRY
C
C INITIALIZE ROUTINE CONSTANTS
C
ITRMAX=300
NMAX=100
TOLR=1.D-2
IERR=0
C
C READ AND PRINT INPUT DATA
C
C READ AND WRITE TITLE
READ (JREAD,27,END=25) TITLE
C
WRITE (JWRITE,28) TITLE
C READ AND WRITE OPTIONS
READ (JREAD,29) VAR
ITER = IDINT(VAR(1))
IPLOT = IDINT(VAR(2))
IPUNCH = IDINT(VAR(3))
IOP = IDINT(VAR(4))
ICAMTK = IDINT(VAR(5))
IBAD = IDINT(VAR(6))
ITRN = IDINT(VAR(7))
INTR = IDINT(VAR(8))
C CHECK LIMITS OF OPTIONS
IF (ITER.GT.ITRMAX) ITER=ITRMAX
C IF (IPLOT.GT.10) IPLOT=0
IPLOT = 0
C IF (IPUNCH.GT.6) IPUNCH=0
C IPUNCH = 1
IF (IOP.GT.3) GO TO 23
IF (ICAMTK.NE.0) ICAMTK=1
IF (IBAD.NE.0) IBAD=1
IF (ITRN.NE.0) ITRN=1
IF (INTR.GT.2) INTR=0
WRITE (JWRITE,30) ITER,IPLOT,IPUNCH,IOP,ICAMTK,IBAD,ITRN,INTR
C READ AND WRITE NUMBER OF UPPER SURFACE INPUT POINTS
C READ (JREAD,29) VAR(1) MSS033195
READ(JREAD,*) VAR(1)
NU=IDINT(VAR(1))
IF (NU.GT.NMAX) GO TO 22
WRITE (JWRITE,31) NU
C READ AND WRITE UPPER SURFACE INPUT POINTS AND WEIGHTING
C READ (JREAD,32) (XU(I),YU(I),WU(I),I=1,NU) MSS033195
READ(JREAD,*) (XU(I),YU(I),I=1,NU)
DO 2 I=1,NU
WU(I) = 0.
IF (WU(I).LT.1.0) WU(I)=1.0
2 CONTINUE
IF (IOP.EQ.0) WRITE (JWRITE,33) (XU(I),I=1,NU)
IF (IOP.NE.0) WRITE (JWRITE,34) (XU(I),I=1,NU)
IF (IOP.LT.2) WRITE (JWRITE,35) (YU(I),I=1,NU)
IF (IOP.EQ.2) WRITE (JWRITE,36) (YU(I),I=1,NU)
IF (IOP.EQ.3) WRITE (JWRITE,37) (YU(I),I=1,NU)
WRITE (JWRITE,38) (WU(I),I=1,NU)
C READ AND WRITE NUMBER OF LOWER SURFACE INPUT POINTS
C READ (JREAD,29) VAR(1) MSS033195
READ(JREAD,*) VAR(1)
NL=IDINT(VAR(1))
IF (NL.GT.NMAX) GO TO 22
WRITE (JWRITE,39) NL
C READ AND WRITE LOWER SURFACE INPUT POINTS AND WEIGHTING
C READ (JREAD,32) (XL(I),YL(I),WL(I),I=1,NL) MSS033195
READ (JREAD,*) (XL(I),YL(I),I=1,NL)
DO 3 I=1,NL
WL(I) = 0.
IF (WL(I).LT.1.0) WL(I)=1.0
3 CONTINUE
IF (IOP.EQ.0) WRITE (JWRITE,40) (XL(I),I=1,NL)
IF (IOP.NE.0) WRITE (JWRITE,41) (XL(I),I=1,NL)
IF (IOP.LT.2) WRITE (JWRITE,42) (YL(I),I=1,NL)
IF (IOP.EQ.2) WRITE (JWRITE,43) (YL(I),I=1,NL)
IF (IOP.EQ.3) WRITE (JWRITE,44) (YL(I),I=1,NL)
WRITE (JWRITE,45) (WL(I),I=1,NL)
C READ AND WRITE TRAILING-EDGE COORDINATES
IF (IOP.LE.1) GO TO 4
READ (JREAD,29) YLTE,YNOSE,YUTE
WRITE (JWRITE,46) YLTE,YNOSE,YUTE
C READ AND WRITE NUMBER OF INTERPOLATION COORDINATES
4 IF (INTR.EQ.0) GO TO 6
IF (INTR.NE.2) GO TO 5
C READ (JREAD,29) VAR(1) MSS033195
READ(JREAD,*) VAR(1)
NINT=IDINT(VAR(1))
IF (NINT.GT.NMAX) GO TO 24
WRITE (JWRITE,47) NINT
WRITE(6,*) ' NINT =', NINT
C READ AND WRITE INTERPOLATION COORDINATES
C MSS033195 MADE UNFORMATTED READ
READ (JREAD,*) (XINT(I),I=1,NINT)
WRITE (JWRITE,48) (XINT(I),I=1,NINT)
C READ AND WRITE NEW CHORD OF INTERPOLATED COORDINATES
C MSS 033195 MADE UNFORMATTED READ
5 IF (INTR.EQ.2) READ (JREAD,*) CNEW
IF (INTR.EQ.2) WRITE (JWRITE,49) CNEW
C
C CHECK UPPER SURFACE COORDINATES FOR BAD POINTS
C
6 IF (IOP.NE.0) GO TO 7
IF (IBAD.EQ.1) CALL BADPT (XU,YU,NU,TOLR,1,IERR)
IF (IERR.NE.0) GO TO 26
C
C CHECK LOWER SURFACE COORDINATES FOR BAD POINTS
C
IF (IBAD.EQ.1) CALL BADPT (XL,YL,NL,TOLR,2,IERR)
IF (IERR.NE.0) GO TO 26
C
C TRANSLATE AND ROTATE THE INPUT COORDINATES SO THAT THE X-AXIS
C CORRESPONDS TO THE LONGEST CHORDLINE OF THE AIRFOIL
C
IF (ITRN.EQ.1) CALL TRNSRT (XU,YU,WU,NU,XL,YL,WL,NL, TITLE)
C
C LOAD X, Y, THETA, YPS, AND YPPS ARRAYS
C
7 IF (IOP) 8,8,15
C IF IOP=0, COMPUTE THETA FROM INPUT X
C COMPUTE THETA FOR LOWER SURFACE
8 CHORD=XL(NL)-XL(1)
DELTA=XU(NU)-XU(1)
IF (DELTA.GT.CHORD) CHORD=DELTA
NP=0
DO 11 I=1,NL
NP=NP+1
J=NL+1-I
W(NP)=WL(J)
DELTA=(XL(J)-XL(1))/CHORD
IF (DELTA.LE.CONS) GO TO 9
DELTA=DTAN(DELTA/CONS-1.)
THETA(NP)=-PI2-DLOG(DELTA+DSQRT(DELTA*DELTA+1.))
GO TO 10
9 THETA(NP)=-DACOS(1.-DELTA/CONS)
10 X(NP)=XL(J)/CHORD
11 Y(NP)=YL(J)/CHORD
NOSE=NP
C COMPUTE THETA FOR UPPER SURFACE
J=1
IF (XL(1).EQ.XU(1).AND.YL(1).EQ.YU(1)) J=2
DO 14 I=J,NU
NP=NP+1
W(NP)=WU(I)
DELTA=(XU(I)-XU(1))/CHORD
IF (DELTA.LE.CONS) GO TO 12
DELTA=DTAN(DELTA/CONS-1.)
THETA(NP)=PI2+DLOG(DELTA+DSQRT(DELTA*DELTA+1.))
GO TO 13
12 THETA(NP)=DACOS(1.-DELTA/CONS)
13 X(NP)=XU(I)/CHORD
14 Y(NP)=YU(I)/CHORD
GO TO 20
C IF IOP=1, 2, OR 3, COMPUTE X/C FROM INPUT THETA
C COMPUTE X/C FOR LOWER SURFACE
15 CHORD=1.0
NP=0
DO 17 I=1,NL
NP=NP+1
J=NL+1-I
W(NP)=WL(J)
IF (IOP.EQ.1) Y(NP)=YL(J)
IF (IOP.EQ.2) YPS(NP)=YL(J)
IF (IOP.EQ.3) YPPS(NP)=YL(J)
THETA(NP)=XL(J)/RAD
DELTA=DABS(THETA(NP))
IF (DELTA.GT.PI2) GO TO 16
XL(J)=CONS*(1.-DCOS(DELTA))
GO TO 17
16 XL(J)=CONS*(DATAN(DSINH(DELTA-PI2))+1.)
17 X(NP)=XL(J)
NOSE=NP
C COMPUTE X/C FOR UPPER SURFACE
XU(1)=XL(1)
DO 19 I=2,NU
NP=NP+1
W(NP)=WU(I)
IF (IOP.EQ.1) Y(NP)=YU(I)
IF (IOP.EQ.2) YPS(NP)=YU(I)
IF (IOP.EQ.3) YPPS(NP)=YU(I)
THETA(NP)=XU(I)/RAD
DELTA=DABS(THETA(NP))
IF (DELTA.GT.PI2) GO TO 18
XU(I)=CONS*(1.-DCOS(DELTA))
GO TO 19
18 XU(I)=CONS*(DATAN(DSINH(DELTA-PI2))+1.)
19 X(NP)=XU(I)
C
C PRINT SUMMARY OF INPUT DATA
C
WRITE(*,*) 'PRINTING SUMMARY OF INPUT DATA, IP,IERR=', NP, IERR
20 WRITE (JWRITE,50) TITLE
DO 21 I=1,NP
DELTA=THETA(I)*RAD
IF (IOP.LE.1) THEN
WRITE (JWRITE,51) I,X(I),Y(I),DELTA,W(I)
END IF
IF (IOP.EQ.2) WRITE (JWRITE,52) I,X(I),DELTA,YPS(I),W(I)
IF (IOP.EQ.3) WRITE (JWRITE,53) I,X(I),DELTA,YPPS(I),W(I)
21 CONTINUE
WRITE (JWRITE,54) CHORD
GO TO 26
C
C PRINT ERROR MESSAGES
C
22 NN=IDINT(VAR(1))
WRITE (JWRITE,55) NN
GO TO 25
23 WRITE (JWRITE,56) IOP
GO TO 25
24 WRITE (JWRITE,57) NINT
C
C NO ADDITIONAL INPUT DATA
C
25 IERR=2
C
C RETURN TO CALLING PROGRAM
C
26 RETURN
C
27 FORMAT (8A10)
28 FORMAT (57X,14H--INPUT DATA--//5X,7HTITLE--,2X,8A10)
29 FORMAT (8F10.5)
30 FORMAT (/5X,6HITER =,I4,3X,7HIPLOT =,I3,3X,8HIPUNCH =,I3,3X,5HIOP
1=,I3,3X,8HICAMTK =,I3,3X,6HIBAD =,I3,3X,6HITRN =,I3,3X,6HINTR =,I3
2)
31 FORMAT (/5X,4HNU =,I4)
32 FORMAT (3F10.5)
33 FORMAT (/5X,3HXU=,8E15.6/(8X,8E15.6))
34 FORMAT (/5X,3HTU=,8E15.6/(8X,8E15.6))
35 FORMAT (/5X,3HYU=,8E15.6/(8X,8E15.6))
36 FORMAT (/4X,4HYPU=,8E15.6/(8X,8E15.6))
37 FORMAT (/3X,5HYPPU=,8E15.6/(8X,8E15.6))
38 FORMAT (/5X,3HWU=,8E15.6/(8X,8E15.6))
39 FORMAT (/5X,4HNL =,I4)
40 FORMAT (/5X,3HXL=,8E15.6/(8X,8E15.6))
41 FORMAT (/5X,3HTL=,8E15.6/(8X,8E15.6))
42 FORMAT (/5X,3HYL=,8E15.6/(8X,8E15.6))
43 FORMAT (/4X,4HYPL=,8E15.6/(8X,8E15.6))
44 FORMAT (/3X,5HYPPL=,8E15.6/(8X,8E15.6))
45 FORMAT (/5X,3HWL=,8E15.6/(8X,8E15.6))
46 FORMAT (/3X,6HYLTE =,E15.6,5X,7HYNOSE =,E15.6,5X,6HYUTE =,E15.6)
47 FORMAT (/3X,6HNINT =,I4)
48 FORMAT (/3X,5HXINT=,8E15.6/(8X,8E15.6))
49 FORMAT (/3X,6HCNEW =,F10.3)
50 FORMAT (1H1,29X,25H--SUMMARY OF INPUT DATA--//5X,9HTITLE-- ,8A10/
1/9X,1HI,10X,3HX/C,12X,3HY/C,12X,5HTHETA,10X,3HYPS,12X,4HYPPS,14X,1
2HW)
51 FORMAT (I10,2F15.6,F15.2,30X,F15.2)
52 FORMAT (I10,F15.6,15X,F15.2,F15.6,15X,F15.2)
53 FORMAT (I10,F15.6,15X,F15.2,15X,F15.6,F15.2)
54 FORMAT (/5X,7HCHORD =,F15.6)
55 FORMAT (//5X,28HINPUT CARD ERROR NU OR NL =,I4)
56 FORMAT (//5X,23HINPUT CARD ERROR IOP =,I4)
57 FORMAT (//5X,24HINPUT CARD ERROR NINT =,I5)
END SUBROUTINE INPUT
C*DECK TRNSRT
SUBROUTINE TRNSRT (XU,YU,WU,NU,XL,YL,WL,NL,TITLE)
C
C ROUTINE TO TRANSLATE AND ROTATE THE INPUT AIRFOIL COORDINATES SO
C THAT THE X-AXIS CORRESPONDS TO THE LONGEST CHORDLINE
C
C CALLED BY INPUT; NO CALLS
C CODED BY -- HARRY MORGAN NASA/LARC/TAD/AAB 1982
C
IMPLICIT REAL*8(A-H,O-Z)
C
CHARACTER TITLE(8)*10
C
DIMENSION XU(*), YU(*), WU(*), XL(*), YL(*), WL(*)
C
COMMON /HLM/ X(200),Y(200),W(200), DUMMY6(1400)
C
COMMON /BLK1/ PI,PI2,RAD,CONS
C
COMMON /INOUT/ JREAD,JWRITE,IPRINT,DOUT,SMRY
C
C PRINT INPUT COORDINATES
C
WRITE (JWRITE,13) TITLE
J=NU
IF (NL.GT.NU) J=NL
DO 1 I=1,J
IF (I.LE.NU.AND.I.LE.NL) WRITE (JWRITE,14) I,XU(I),YU(I),XL(I),YL(
1I)
IF (I.LE.NU.AND.I.GT.NL) WRITE (JWRITE,14) I,XU(I),YU(I)
IF (I.GT.NU.AND.I.LE.NL) WRITE (JWRITE,15) I,XL(I),YL(I)
1 CONTINUE
C
C COMPUTE LONGEST CHORDLINE
C
C LOAD LOWER SURFACE COORDINATES
N=0
DO 2 I=1,NL
J=NL+1-I
N=N+1
W(N)=WL(J)
X(N)=XL(J)
2 Y(N)=YL(J)
J=1
IF (XL(1).EQ.XU(1).AND.YL(1).EQ.YU(1)) J=2
C LOAD UPPER SURFACE COORDINATES
DO 3 I=J,NU
N=N+1
W(N)=WU(I)
X(N)=XU(I)
3 Y(N)=YU(I)
C COMPUTE MIDPOINT OF TRAILING-EDGE BASE
XTE=0.5*(X(1)+X(N))
YTE=0.5*(Y(1)+Y(N))
C FIND MOST FORWARD LEADING-EDGE POINT AND LONGEST CHORD
CHORD=0.0
DO 5 I=1,N
DIST=DSQRT((X(I)-XTE)**2+(Y(I)-YTE)**2)
IF (DIST-CHORD) 5,5,4
4 CHORD=DIST
NOSE=I
XNOSE=X(I)
YNOSE=Y(I)
5 CONTINUE
C
C TRANSLATE AND ROTATE AIRFOIL
C
IF (CHORD.LE.0.0) GO TO 6
COSA=(XTE-XNOSE)/CHORD
SINA=(YTE-YNOSE)/CHORD
ANGLE=DATAN(SINA/COSA)*RAD
GO TO 7
6 COSA=0.0
SINA=0.0
ANGLE=0.0
7 DO 8 I=1,N
DIST=X(I)
X(I)=(DIST-XNOSE)*COSA+(Y(I)-YNOSE)*SINA
8 Y(I)=(Y(I)-YNOSE)*COSA-(DIST-XNOSE)*SINA
C
C REDEFINE LOWER AND UPPER SURFACE COORDINATES
C
DO 9 I=1,NOSE
J=NOSE+1-I
WL(I)=W(J)
XL(I)=X(J)
9 YL(I)=Y(J)
NL=NOSE
DO 10 I=NOSE,N
J=I+1-NOSE
WU(J)=W(I)
XU(J)=X(I)
10 YU(J)=Y(I)
NU=J
C
C PRINT NEW AIRFOIL COORDINATES
C
WRITE (JWRITE,16) TITLE
J=NU
IF (NL.GT.NU) J=NL
DO 11 I=1,J
IF (I.LE.NU.AND.I.LE.NL) WRITE (JWRITE,14) I,XU(I),YU(I),XL(I),YL(
1I)
IF (I.LE.NU.AND.I.GT.NL) WRITE (JWRITE,14) I,XU(I),YU(I)
IF (I.GT.NU.AND.I.LE.NL) WRITE (JWRITE,15) I,XL(I),YL(I)
11 CONTINUE
WRITE (JWRITE,12) XNOSE,YNOSE,ANGLE
RETURN
C
C.... LEADING SLASH ON NEXT LINE INSURES A BLANK LINE AFTER WRITING THE TABLES
12 FORMAT (/5X,7HXNOSE =,F15.6,5X,7HYNOSE =,F15.6,5X,7HANGLE =,F8.3)
13 FORMAT (1H1,32X,21H--INPUT COORDINATES--//5X,7HTITLE--,2X,8A10//
1 9X,1HI,11X,2HXU,13X,2HYU,13X,2HXL,13X,2HYL)
14 FORMAT (5X,I5,4F15.6)
15 FORMAT (5X,I5,30X,2F15.6)
16 FORMAT (/1H1,21X,38H--TRANSLATED AND ROTATED COORDINATES--//5X,
1 7HTITLE--,2X,8A10//9X,1HI,11X,2HXU,13X,2HYU,13X,2HXL,13X,2HYL)
END SUBROUTINE TRNSRT
C*DECK BADPT
SUBROUTINE BADPT (X,Y,NP,TOLR,ISURF,IERR)
C
C ROUTINE TO EDIT BAD POINTS FROM X AND Y INPUT COORDINATES
C CALLED BY INPUT; CALLS INTER
C
C CODED BY -- HARRY MORGAN NASA/LARC/TAD/AAB 1982
C
IMPLICIT REAL*8(A-H,O-Z)
C
DIMENSION X(NP),Y(NP),SURF(2)
C
COMMON /HLM/ TI(100),YI(100),YN(100),THETA(100),DUMMY7(1600)
C
COMMON /BLK1/ PI,PI2,RAD,CONS
C
COMMON /INOUT/ JREAD,JWRITE,IPRINT,DOUT,SMRY
C
DATA SURF(1)/5HUPPER/,SURF(2)/5HLOWER/
C
C IF TOLERANCE IS ZERO OR NEGATIVE RETURN
C
IERR=0
IF (TOLR.LE.0.0) RETURN
C
C COMPUTE LOCAL CHORD
C
CHORD=X(NP)-X(1)
C
C INITIALIZE ITERATION PARAMETERS
C
ICD=0
IPTP=0
N1=NP-1
NMAX=0
TOLC=TOLR*CHORD
C
C COMPUTE THETA EQUIVALENT OF X
C
DO 2 I=1,NP
DELTA=(X(I)-X(1))/CHORD
IF (DELTA.LE.CONS) GO TO 1
DELTA=DTAN(DELTA/CONS-1.)
THETA(I)=PI2+DLOG(DELTA+DSQRT(DELTA*DELTA+1.))
GO TO 2
1 THETA(I)=DACOS(1.-DELTA/CONS)
2 CONTINUE
C
C LOOP TO SEARCH FOR BAD POINTS
C
3 NMAX=NMAX+1
JSTART=1
C COMPUTE NEW Y VALUE BY INTERPOLATION
DO 5 I=2,N1
K=0
C LOAD TI AND YI ARRAY - OMIT THE I(TH) INPUT DATA POINT
DO 4 J=1,NP
IF (I.EQ.J) GO TO 4
K=K+1
TI(K)=THETA(J)
YI(K)=Y(J)
4 CONTINUE
C INTERPOLATE I(TH) DATA POINT
CALL INTER (THETA(I),YN(I),K,TI,YI,JSTART,JEND,ICD)
JSTART=JEND
5 CONTINUE
C CHECK TOLERANCE OF INTERPOLATED POINTS
IPT=0
ERRMAX=0.
DO 7 I=2,N1
ERRMIN=0.
ERR=DABS(YN(I)-Y(I))
IF (ERR.GE.TOLC) ERRMIN=ERR
IF (ERRMIN-ERRMAX) 7,7,6
6 IPT=I
ERRMAX=ERRMIN
7 CONTINUE
IF (IPT.EQ.0) RETURN
C PRINT COORDINATES OF BAD POINTS
IF (NMAX.EQ.1) WRITE (JWRITE,9) SURF(ISURF),TOLC
WRITE (JWRITE,10) IPT,X(IPT),Y(IPT),YN(IPT)
C REPLACE BAD POINT WITH INTERPOLATED VALUE
Y(IPT)=YN(IPT)
C CHECK TO SEE IF THIS BAD POINT IS ADJACENT TO THE PREVIOUS BAD
C POINT -- IF IT IS, PRINT A WARNING MESSAGE AND TERMINATE
C PROGRAM EXECUTION
IF ((IPTP.EQ.IPT-1).OR.(IPTP.EQ.IPT+1)) GO TO 8
IF (IPTP.EQ.IPT) GO TO 8
IPTP=IPT
IF (NMAX.GE.NP) RETURN
C
C RETURN TO START OF LOOP AND SEARCH FOR NEXT BAD POINT
C
GO TO 3
C
C WARNING MESSAGE PRINT STATEMENT
C
8 WRITE (JWRITE,11)
IERR=1
RETURN
C
9 FORMAT (1H1//1X,44HWARNING -- BAD POINTS HAVE BEEN FOUND ON THE,1X
1,A5,1X,37HSURFACE BASED ON AN EDIT TOLERANCE OF,F10.6/)
10 FORMAT (1X,15HBAD POINT AT I=,I4,5X,4HX = ,F10.6,5X,4HY = ,F10.6,5
1X,18HREPLACED WITH Y = ,F10.6/)
11 FORMAT (1X,93HADJACENT BAD POINTS HAVE BEEN FOUND -- PLEASE CORREC
1T YOUR INPUT DATA AND RESUBMIT THIS CASE.)
END SUBROUTINE BADPT
C*DECK SMOXY
SUBROUTINE SMOXY (THETA,X,Y,W,YSMO,YPS,YPPS,NP,NOSE,YLTE,YNOSE,YUT
1E,EPS,DF,ITER,TITLE,IOP,IERR)
C
C THIS SUBROUTINE PRESENTS A TECHNIQUE FOR SMOOTHING Y INPUT
C COORDINATES USING LEAST SQUARES POLYNOMIAL AND CUBIC SPLINE
C METHODS
C
C IF IOP=0 OR 1, COMPUTE YPPU (UNSMOOTHED SECOND DERIVATIVES) FROM
C LEAST SQUARES POLYNOMIAL FITTING OF Y VS THETA. THEN COMPUTE
C YPPS (SMOOTHED SECOND DERIVATIVES) FROM LEAST SQUARES CUBIC
C SPLINE FITTING OF YPPU VS THETA. FINALLY COMPUTE YSMO (SMOOTHED Y
C COORDINATES) USING INVERSE CUBIC SPLINE METHOD.
C
C IF IOP=2, COMPUTE SECOND DERIVATIVES FROM INPUT FIRST DERIVATIVES.
C THEN COMPUTE UNSMOOTHED Y COORDINATES FROM SECOND DERIVATIVES AND
C FOLLOW SAME PROCEDURES AS OUTLINED ABOVE FOR IOP 0 OR 1.
C
C IF IOP=3, COMPUTE UNSMOOTHED Y COORDINATES FROM INPUT SECOND
C DERIVATIVES. THEN FOLLOW SAME PROCEDURES AS OUTLINED ABOVE FOR
C IOP 0 OR 1.
C
C CALLED BY MAIN PROGRAMCALLS INTER,CSDS,LSQSMO,YNEW
C CODED BY -- HARRY MORGAN NASA/LARC/TAD/AAB 1982
C
C DIMENSION THETA, X, Y, W, YSMO, YPS, AND YPPS BY NP IN CALLING
C PROGRAM
C
IMPLICIT REAL*8(A-H,O-Z)
C
CHARACTER TITLE(8)*10
C
DIMENSION THETA(NP),X(NP),Y(NP),W(NP),YSMO(NP),YPS(NP),YPPS(NP)
DIMENSION WORKDUMMY(2000)
C
COMMON /HLM/ WK(200,10)
C
COMMON /SMY/ YPP(200),YUSMO(200),DUM(200),A(200,4),YN(200),
X YPPU(200),SUMY(300),LTER(60)
C
COMMON /BLK1/ PI,PI2,RAD,CONS
C
COMMON /INOUT/ JREAD,JWRITE,IPRINT,DOUT,SMRY
C
DATA LMX/200/,WT/100./
C
C WRITE(*,*) 'ENTERING SMOXY, NP=', NP
IERR=0
IF (IOP.EQ.0.OR.IOP.EQ.1) GO TO 13
IF (IOP.EQ.2) GO TO 1
IF (IOP.EQ.3) GO TO 11
C
C IF IOP=2, COMPUTE SECOND DERIVATIVES FROM INPUT FIRST
C DERIVATIVES. THEN COMPUTE INITIAL Y/C COORDINATES FROM SECOND
C DERIVATIVES.
C
C COMPUTE SECOND DERIVATIVES USING CSDS
1 DO 2 I=1,NP
2 DUM(I)=1.0
T1=0.0
CALL CSDS (LMX,NP,THETA,YPS,DUM,T1,-1,A,WK,IERR)
IF (IERR.NE.0) GO TO 71
DO 4 I=1,NP
IF (I.EQ.NP) GO TO 3
YPPS(I)=A(I,2)
GO TO 4
3 DELTA=THETA(I)-THETA(I-1)
YPPS(I)=(3.*A(I-1,4)*DELTA+2.*A(I-1,3))*DELTA+A(I-1,2)
4 CONTINUE
C COMPUTE SECOND DERIVATIVES USING LSQSMO
DELTA=1.
CALL LSQSMO (THETA,YPS,W,DUM,YPP,YUSMO,NP,1,NP,NOSE,DELTA,EPS,IERR
1)
IF (IERR.NE.0) RETURN
C COMPUTE Y/C COORDINATES
CALL YNEW (THETA,YPPS,Y,NOSE,NP,YLTE,YNOSE,YUTE,EPS,DUM,WK,JWRITE,
10)
CALL YNEW (THETA,YPP,YUSMO,NOSE,NP,YLTE,YNOSE,YUTE,EPS,DUM,WK,JWRI
1TE,0)
C COMPUTE NEW FIRST DERIVATIVES AND COMPARE WITH INPUT
C FIRST DERIVATIVES
WRITE (JWRITE,73) TITLE
SUM1=0.0
SUM2=0.0
DO 7 I=1,NP
IF (I.EQ.1) GO TO 5
DELTA=THETA(I)-THETA(I-1)
YN(I)=YPPS(I-1)*DELTA/6.+YPPS(I)*DELTA/3.+(Y(I)-Y(I-1))/DELTA
DUM(I)=YPP(I-1)*DELTA/6.+YPP(I)*DELTA/3.+(YUSMO(I)-YUSMO(I-1))/DEL
1TA
GO TO 6
5 DELTA=THETA(2)-THETA(1)
YN(1)=-YPPS(1)*DELTA/3.-YPPS(2)*DELTA/6.+(Y(2)-Y(1))/DELTA
DUM(1)=-YPP(1)*DELTA/3.-YPP(2)*DELTA/6.+(YUSMO(2)-YUSMO(1))/DELTA
6 T1=YPS(I)-YN(I)
T2=YPS(I)-DUM(I)
SUM1=SUM1+T1*T1
SUM2=SUM2+T2*T2
7 WRITE (JWRITE,74) I,YPS(I),YN(I),T1,DUM(I),T2
WRITE (JWRITE,75) SUM1,SUM2
C SELECT OUTPUT FROM EITHER CSDS OR LSQSMO
DO 10 I=1,NP
IF (SUM2.LT.SUM1) GO TO 8
YPP(I)=YPPS(I)