-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIncoming.dfy
169 lines (126 loc) · 5.8 KB
/
Incoming.dfy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
//Incoming depends on Edges
type Incoming = map<Object,set<Edge>>
function partitionedIncomingEdges(es : set<Edge>) : (r : map<Object,set<Edge>>)
requires edgesAreConsistentWithDafnyHeap(es)
reads set e <- es :: e.f
reads set e <- es :: e.t
ensures forall k <- r.Keys, e <- r[k] :: e in es && e.t == k
ensures forall e <- es :: (e.t in r) && (e in r[e.t])
ensures (set k <- r.Keys, e <- r[k] :: e) == es
ensures forall k <- r.Keys :: r[k] == incomingEdges(k, es)
{
var incomingPartions : set<Object> := set e <- es :: e.t;
map o <- incomingPartions :: incomingEdges(o, es)
}
predicate {:opnly} partitionedLessEQ(lesp : Incoming, morp : Incoming)
{
&& lesp.Keys <= morp.Keys
&& (forall l <- lesp.Keys :: lesp[l] <= morp[l])
&& (forall l <- lesp.Keys :: |lesp[l]| <= |morp[l]|)
}
lemma partitionedIncomingEdgesMonotonic(
less : set<Edge>, more : set<Edge>,
lesp : map<Object,set<Edge>>, morp : map<Object,set<Edge>>)
requires edgesAreConsistentWithDafnyHeap(less)
requires edgesAreConsistentWithDafnyHeap(more)
requires less <= more
requires lesp == partitionedIncomingEdges(less)
requires morp == partitionedIncomingEdges(more)
ensures lesp.Keys <= morp.Keys
ensures forall l <- lesp.Keys :: lesp[l] <= morp[l]
ensures forall l <- lesp.Keys :: |lesp[l]| <= |morp[l]|
ensures partitionedLessEQ(lesp, morp)
{
forall l <- lesp.Keys
ensures |lesp[l]| <= |morp[l]|
{
FewerIsLess(lesp[l],morp[l]);
}
}
predicate uniqueIncoming( o : Object, osgp : Incoming)
{
(o in osgp) && (|osgp[o]| == 1)
}
lemma IncomingEdgesAreIncoming(es : set<Edge>, ins : Incoming )
requires edgesAreConsistentWithDafnyHeap(es)
requires ins == partitionedIncomingEdges(es)
ensures forall e <- es :: e in ins[e.t]
ensures (set ines <- ins.Values, e <- ines :: e) == es
ensures forall o <- ins.Keys :: ins[o] == incomingEdges(o,es)
{
// assert ObjectsToEdges(os,es);
// assert ObjectsToIncoming(os,ins);
}
lemma {:timeLimit 30} {:isolate_assertions} FewerPartitionedIncomingEdgesValid(
less : set<Edge>, more : set<Edge>,
lesp : Incoming, morp : Incoming)
requires less <= more
requires lesp == partitionedIncomingEdges(less)
requires morp == partitionedIncomingEdges(more)
requires edgesAreConsistentWithDafnyHeap(less)
requires edgesAreConsistentWithDafnyHeap(more)
requires OnlyOneOwnedOrLoanedIncoming(morp)
requires OneOwnerIncoming(morp)
requires BorrowedNotOwnedIncoming(morp)
requires BorrowsLoansConsistentPermissionIncoming(morp)
requires OnlyOneWriterIncoming(morp)
requires IncomingReferencesConstraintsOK(more)
ensures OnlyOneOwnedOrLoanedIncoming(lesp)
ensures OneOwnerIncoming(lesp)
ensures BorrowedNotOwnedIncoming(lesp)
ensures BorrowsLoansConsistentPermissionIncoming(lesp)
ensures OnlyOneWriterIncoming(lesp)
{
partitionedIncomingEdgesMonotonic(less, more, lesp, morp);
OnlyOnePredIncomingMonotonic(WriterEdge , lesp, morp);
OnlyOnePredIncomingMonotonic(OwnedOrLoanedEdge , lesp, morp);
}//end FewerPartitionedIncomingEdgesValid
function partitionUnion(m: Incoming, m': Incoming): (r: Incoming)
ensures r.Keys == m.Keys + m'.Keys
ensures forall x <- m :: r[x] >= m[x]
ensures forall x <- m' :: r[x] >= m'[x]
{
map x <- (m.Keys + m'.Keys) ::
x := (if (x in m.Keys) then m[x] else {}) + (if (x in m'.Keys) then m'[x] else {})
}
function IncomingReadSet(ins : Incoming) : set<Object>
{
set es : set<Edge> <- ins.Values, e : Edge <- es,
o : Object <- ({e.f} + {e.t}) :: o
}
predicate ObjectsToIncoming(os : set<Object>, ins : Incoming)
// requires IncomingReadSet(ins) <= o
//reads (set es <- ins.Values, e <- es, o <- {e.f}:: o)`fields
reads (set es <- ins.Values, e <- es :: e.f)`fields
//reads os`fields
reads os + (set o <- os, v <- o.ValidReadSet() :: v)
reads (set o <- os, v <- o.fields.Values :: v)
reads ins.Keys + IncomingReadSet(ins)
reads IncomingReadSet(ins)`fields
requires forall o <- os :: o.Ready() && o.Valid() //DO I want this or not? or a separate lemma
{
&& (forall es <- ins.Values, e <- es :: e.n in e.f.fields && e.f.fields[e.n] == e.t)
&& ((os == {}) ==> ((IncomingReadSet(ins)) + ins.Keys) == {}) //but not the other way cos of solitary nodes (incoming & outgoing = 0)
&& (var es := edges(os); forall e <- es :: (e.t in ins.Keys && e in ins[e.t]))
&& (forall o <- os, n <- o.fields.Keys :: o.fields[n] in ins.Keys && edge(o,n) in ins[o.fields[n]])
&& (forall es <- ins.Values, e <- es :: (e.f in os) && (e.n in e.f.fields) && (e.m == e.f.fieldModes[e.n]) && (e.t == e.f.fields[e.n]))
}
//note that this doesn't require e.t to be in os, i.e. we don't require os is "ClosedHeap"
//or whatever we call it.
//perhaps we need more invairants or something to handle that case. grrr.
//how much should be explicit!!! how much implicit??
lemma {:timeLimit 120}
ObjectsToIncomingLemma(os : set<Object>, ins : Incoming)
requires forall o <- os :: o.Ready() && o.Valid()
requires edgesAreConsistentWithDafnyHeap(edges(os))
requires ins == partitionedIncomingEdges(edges(os))
ensures ObjectsToIncoming(os,ins)
{
assert (forall es <- ins.Values, e <- es :: e.n in e.f.fields && e.f.fields[e.n] == e.t);
assert ((os == {}) ==> ((IncomingReadSet(ins)) + ins.Keys) == {}); //but not the other way cos of solitary nodes (incoming & outgoing = 0)
assert (var es := edges(os); forall e <- es :: (e.t in ins.Keys && e in ins[e.t]));
//assert (forall o <- os, n <- o.fields.Keys :: o.fields[n] in ins.Keys); //HERE
assert (forall o <- os, n <- o.fields.Keys :: edge(o,n) in ins[o.fields[n]]);
assert (forall es <- ins.Values, e <- es :: (e.f in os) && (e.n in e.f.fields) && (e.m == e.f.fieldModes[e.n]) && (e.t == e.f.fields[e.n]));
assert ObjectsToIncoming(os,ins);
}