-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcps.scala
134 lines (115 loc) · 3.58 KB
/
cps.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
// Notes from the lab session on Monday, January 12
// First Part: Simple Examples
// ===========================
// Direct Style Continuation-Passing Style
//
// 42 k => k(42)
//
// f(5) k => f_k(5, k)
//
// f(g(5)) k => g_k(a => f_k(a, k))
//
// if (f(5)) k => f_k(5, a => if (a)
// g(1) g_k(1, k)
// else else
// 27 k(27))
// Second Part: Less Simple Examples
// =================================
// Good old faculty function
// -------------------------
def fac(x: Int): Int =
if (x < 1)
1
else
x * fac(x - 1)
// if we treat <, - and * as trivial:
def fac_k[A](x: Int, k: Int => A): A =
if (x < 1)
k(1)
else
fac_k(x - 1, a =>
k(x * a))
// Note about the type variable A: We can choose any type for A,
// as long as we choose the same type for both occurrences. In
// the lecture, Tillmann Rendel used Unit and Klaus Ostermann
// used Nothing. Here, we tell Scala that every type works by
// using a type variable.
// or, if we want to treat <, - and * as nontrivial:
def fac_k[A](x: Int, k: Int => A): A =
<_k(x, 1, a =>
if a
k(1)
else
-_k(x, 1, b =>
fac_k(b, c =>
*_k(x, c, k)))
// The interpreter from 03_ae.scala
// --------------------------------
def eval(e: Exp, env: Env) : Int =
e match {
case Num(n) => n
case Id(x) => env(x)
case Add(l,r) => eval(l,env) + eval(r,env)
case Mul(l,r) => eval(l,env) * eval(r,env)
}
// if we leave environments as they are:
def eval_k(e: Exp, env: Env, k: Int => Nothing) : Nothing =
e match {
case Num(n) => k(n)
case Id(x) => k(env(x))
case Add(l,r) => eval_k(l,env, a => eval(r,env, b => k(a + b)))
case Mul(l,r) => eval_k(l,env, a => eval(r,env, b => k(a * b)))
}
// if we CPS-transform the environment lookup:
type Env_K = Map[Symbol, (Value => Nothing) => Nothing]
def eval_k(e: Exp, env_k: Env_K, k: Int => Nothing) : Nothing =
e match {
case Num(n) => k(n)
case Id(x) => env_k(x, k)
case Add(l,r) => eval_k(l, env, a => eval(r, env, b => k(a + b)))
case Mul(l,r) => eval_k(l, env, a => eval(r, env, b => k(a * b)))
}
// Homework Assignments
// ====================
//
// Email homework as Scala source file to:
//
// rendel@informatik.uni-tuebingen.de
//
// Work in groups of 1 or 2 students. Send the email CC to the
// other student in your team.
//
// Put "pl1-hw06" in subject, please
//
// 1. Transform the expression f(f(3) + f(4)) into CPS
// 2. Transform the following program into CPS:
def all(f: Int => Boolean, list: List[Int]): Boolean =
if (list.isEmpty) {
true
} else {
f(list.head) && all(f, list.tail)
}
val even = (number: Int) => number % 2 == 0
assert(all(even, List(2, 4, 6, 8, 10)))
assert(!(all(even, List(2, 4, 7, 8, 10))))
// 3. Change eval_k to short-circuit multiplications
// if the first factor is 0.
//
// About the last task: For example, in the program
//
// Mul(Num(0), Mul(Num(1), Num(2)))
//
// we don't have to compute * (1 + 2) because we already
// know that 0 times whatever will be 0. So we can "jump
// over" this extra computation, returning 0 directly.
//
// For another example, consider this program:
//
// Add(Mul(Add(Num(-2), Num(2)), Add(Num(1), Num(2))), Num(5))
//
// We have to compute -2 + 2 = 0, then we can jump over * (1 + 2)
// to directly compute 0 + 5 = 5.
//
// Hint for the last task: Use a second continuation that is
// called whenever the result is 0:
def eval_clever(e, env, k_nonzero, k_zero) = ...