-
Notifications
You must be signed in to change notification settings - Fork 2
/
hardware.html
81 lines (64 loc) · 2.93 KB
/
hardware.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
layout: default
title: Klavins Lab | Hardware
---
<div class='contain'>
<div class='heading'>
<h1>Hardware</h1>
</div>
<div class='row'>
<div class='col-xs-1'></div>
<div class='col-xs-4'>
<div class='software-box'>
<div class='software-icon-box' style='height: 470px;'>
<a href='https://depts.washington.edu/soslab/turbidostat/pmwiki/'><img class='software-icon' src='images/turbidostat.png'></img></a>
</div>
<div class='software-name'>The Turbidostat</div>
<div class='software-tag'>Modular, configurable, printable, small.</div>
<div class='software-description'>
<p>A turbidostat is a feedback controlled continuous culture device that keeps cell
density constant. Commercially available turbidostats are not designed with academic
research goals (such as long term evolution or synthetic circuit characterization) in
mind and as a result tend to be too large and have inflexible proprietary software.
We've designed an inexpensive, open source, 3D printable, eight vessel turbidostat that can be
constructed with commodity parts and open source circuits. Our design is programmed
with an open source extensible Python interface that can used to expand the
functionality beyond a standard turbidostat. Presently we are using this device to
grow microbes in a constant environment for days to weeks while sending chemical
signals to characterize gene circuits in bacteria or yeast. Our collaborators at UW,
Rice and UC Berkeley have assembled copies own using our designs with their own
modifications. Complete designs and assembly instructions can be found at the
<a href='https://depts.washington.edu/soslab/turbidostat/pmwiki/'>turbidostat wiki</a>.</p>
</div>
</div>
</div>
<div class='col-xs-1'></div>
<div class='col-xs-4'>
<div class='software-box'>
<div class='software-icon-box' style='height: 220px;'>
<a href='images/parts.jpg'>
<img class='software-icon' src='images/parts.jpg' style='width: 250px;'></img>
</a>
</div>
<div class='software-name'>Robots</div>
<div class='software-tag'>Robots, laboratory automation, and more.</div>
<div class='software-description'>
<p>We have made many robot testbeds in which robots self
assemble or self organize. In one such testbed, triangular
'programmable parts' were stirred randomly on an air table and
self-assembled into preprogrammed shapes. In another, our
'robotic chemistry' parts behaved like molecules in a
chemical reaction that was controllable by light
input. Designs and specifications for these robots, that you
can read about on our <a href='publications.html'>publications page</a>, are available
upon request.
</p>
</div>
</div>
</div>
<div class='col-xs-1'></div>
</div>
</div>
<script>
document.getElementById('nav-hardware').className += " highlight";
</script>