-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathMFCC_DTW.py
300 lines (260 loc) · 9.47 KB
/
MFCC_DTW.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2019/3/22 22:08
# @Author : chuyu zhang
# @File : MFCC_DTW.py
# @Software: PyCharm
import os
import random
from utils.tools import read, get_time,plot_confusion_matrix
from utils.processing import enframe, MFCC
import numpy as np
from scipy.fftpack import fft
import librosa
# dtw is accurate than fastdtw, but it is slower, I will test the speed and acc later
from scipy.spatial.distance import euclidean
from dtw import dtw,accelerated_dtw
from fastdtw import fastdtw
import matplotlib.pyplot as plt
# import seaborn as sns
from tqdm import tqdm
eps = 1e-8
def MFCC_lib(raw_signal, n_mfcc=13):
feature = librosa.feature.mfcc(raw_signal.astype('float32'), n_mfcc=n_mfcc, sr=8000)
# print(feature.T.shape)
return feature.T.flatten()
def _MFCC(raw_signal):
"""
extract mfcc feature
:param raw_signal: the original audio signal
:param fs: sample frequency
:param frameSize:the size of each frame
:param step:
:return: a series of mfcc feature of each frame and flatten to (num, )
"""
# Signal normalization
"""
raw_signal = np.double(raw_signal)
raw_signal = raw_signal / (2.0 ** 15)
DC = raw_signal.mean()
MAX = (np.abs(raw_signal)).max()
raw_signal = (raw_signal - DC) / (MAX + eps)
"""
feature = MFCC(raw_signal, fs=8000, frameSize=512, step=256)
# print(feature.shape)
return feature.flatten()
def distance_dtw(sample_x, sample_y, show=False, dtw_method=1, dist=euclidean):
"""
calculate the distance between sample_x and sample_y using dtw
:param sample_x: ndarray, mfcc feature for each frame
:param sample_y: the same as sample_x
:param show: bool, if true, show the path
:param dtw_method: 1:accelerated_dtw, 2:fastdtw
:return: the euclidean distance
"""
# euclidean_norm = lambda x, y: np.abs(x - y)euclidean
#
#
if dtw_method==2:
d, path = fastdtw(sample_x, sample_y, dist=dist)
elif dtw_method==1:
d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(sample_x, sample_y, dist='euclidean')
if show:
plt.imshow(acc_cost_matrix.T, origin='lower', cmap='gray', interpolation='nearest')
plt.plot(path[0], path[1], 'w')
plt.show()
return d
def distance_train(data):
"""
calculate the distance of all data
:param data: input data, list, mfcc feature of all audio
:return: the distance matrix
"""
start_time = get_time()
distance = np.zeros((len(data), len(data)))
for index, sample_x in enumerate(data):
col = index + 1
for sample_y in data[col:]:
distance[index, col] = distance_dtw(sample_x, sample_y)
distance[col, index] = distance[index, col]
col += 1
print('cost {}s'.format(get_time(start_time)))
return distance
def distance_test(x_test, x_train, show=False):
"""
calculate the distance between x_test(one sample) and x_train(many sample)
:param x_test: a sample
:param x_train: the whole train dataset
:return: distance based on dtw
"""
distance = np.zeros((1, len(x_train)))
for index in range(len(x_train)):
distance[0, index] = distance_dtw(x_train[index], x_test, show=show)
return distance
def sample(x, y, sample_num=2, whole_num=8):
index = random.sample(range(whole_num), sample_num)
sample_x = []
sample_y = []
for i in range(4):
for _index in index:
sample_x.append(x[_index + whole_num*i])
sample_y.append(y[_index + whole_num*i])
return sample_x, sample_y
def load_train(path='dataset/ASR/train', mfcc_extract=_MFCC):
"""
load data from dataset/ASR/train and generate template
:param path: the path of dataset
:return: x is train data, y_label is the label of x
"""
start_time = get_time()
# wav_dir is a list, which include four directory in train.
wav_dir = os.listdir(path)
y_label = []
x = []
print("Generate template according to train set.")
for _dir in tqdm(wav_dir):
_x = []
for _path in os.listdir(os.path.join(path, _dir)):
_, data = read(os.path.join(path, _dir, _path))
# Some audio has two channel, but some audio has one channel.
# so, I add "try except" to deal with such problem.
# downsample the data to 8k
try:
_x.append(mfcc_extract(data[range(0, data.shape[0], 2), 0]))
except:
_x.append(mfcc_extract(data[range(0, data.shape[0], 2)]))
del data
# print(_x[-1].shape)
# generate a template of different speaker.
x.append(generate_template(_x))
y_label.append(_dir)
print('Loading train data, extract mfcc feature and generate template spend {}s'.format(get_time(start_time)))
return x,y_label
def load_test(path='dataset/ASR/test', mfcc_extract=MFCC, template=False):
"""
load data from dataset/ASR/test
:param path: the path of dataset
:return: x is train data, y_label is the label of x
"""
start_time = get_time()
if template:
# load template directly.
pass
# wav_dir is a list, which include four directory in train.
wav_dir = os.listdir(path)
y_label = []
x = []
# enc = OrdinalEncoder()
for _dir in wav_dir:
for _path in os.listdir(os.path.join(path, _dir)):
_, data = read(os.path.join(path, _dir, _path))
# Some audio has two channel, but some audio has one channel.
# so, I add "try except" to deal with such problem.
# downsample the data to 8k
try:
x.append(mfcc_extract(data[range(0, data.shape[0], 2), 0]))
except:
x.append(mfcc_extract(data[range(0, data.shape[0], 2)]))
del data
y_label.append(_dir)
print('Loading test data and extract mfcc feature spend {}s'.format(get_time(start_time)))
return x,y_label
def generate_template(x):
# max_length is the max length of audio in x.
max_length = -1
# max_length_index is the index of max length audio.
max_length_index = 0
template = None
for index, _x in enumerate(x):
if _x.shape[0] > max_length:
max_length = _x.shape[0]
max_length_index = index
template = x[max_length_index]
for index, _x in enumerate(x):
if index != max_length_index:
d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(_x, template, dist='euclidean')
template = (_x[path[0]] + template[path[1]])/2
# the dimension of template will arise after previous step,
# so I will decrease the dimension of template, to keep it to be the same as initial.
pre_road = -1
ind = []
for current_road in path[1]:
if current_road!=pre_road:
ind.append(True)
else:
ind.append(False)
pre_road = current_road
template = template[ind]
return template
def vote(label):
label = np.array(label)
_dict = {}
for l in label:
if l not in _dict:
_dict[l] = 1
else:
_dict[l] += 1
return sorted(_dict.items(), key=lambda x: x[1], reverse=True)[0][0]
def test(threshold=100):
x_train,y_train = load_train(path='dataset/ASR/train')
# x_train,y_train = sample(x_train, y_train)
x_test,y_test = load_test(path='dataset/ASR/test')
# x_test, y_test = x_train,y_train
y_pred = []
# print(len(x_train))
distances = np.zeros((len(x_test), len(x_train)))
index = 0
for x in tqdm(x_test):
distance = distance_test(x, x_train)
distances[index, :] = distance
# top = np.argsort(distance)
# print(top)
y_pred.append(y_train[np.argmin(distance)])
index += 1
# when I set threshold to 100, the results is very bad, many sample are classified to other,
# so, I decide to give up threshold,
"""
if np.min(distance) < threshold:
y_pred.append(y_train[np.argmin(distance)])
else:
y_pred.append('other')
"""
y_pred = np.array(y_pred)
y_test = np.array(y_test)
acc = (y_pred==y_test).sum()/y_test.shape[0]
print("accuracy is {:.2%}".format(acc))
# distances = np.concatenate([y_test.reshape(-1,1), distances], axis=1)
# print(y_train)
# np.savetxt('distance_template.csv', X=distances, delimiter=',')
np.savetxt('res.csv', X=(y_pred==y_test), delimiter=',')
plot_confusion_matrix(y_test, y_pred, classes=y_train)
plt.show()
def plot(filename):
_, audio = read(filename)
# 语音图
plt.figure()
plt.plot(audio)
# 频谱图
# mel频谱图
# DTW路径图
pass
if __name__=='__main__':
test()
"""
x_train,y_train = load_wav(path='dataset/ASR/train')
# distance = distance_dtw(x_train[0], x_train[1])
print(x_train[0].shape)
d, cost_matrix, acc_cost_matrix, path = accelerated_dtw(x_train[0], x_train[1], dist='euclidean')
print(cost_matrix.shape)
print(acc_cost_matrix.shape)
print('*'*50)
print(path[0].shape)
print('*'*50)
print(path[1].shape)
plt.imshow(acc_cost_matrix.T, origin='lower', cmap='gray', interpolation='nearest')
plt.plot(path[0], path[1], 'w')
plt.show()
"""
# np.savetxt('dis.csv', X=distance, delimiter=',')
# print(distance_dtw(x[0], x[1], show=True))
# print(distance_dtw(x[0], x[5], show=True))