forked from DuncanSmith147/KVMS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
digraph.py
executable file
·602 lines (520 loc) · 20.3 KB
/
digraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
##Copyright (c) 2011 duncan g. smith
##
##Permission is hereby granted, free of charge, to any person obtaining a
##copy of this software and associated documentation files (the "Software"),
##to deal in the Software without restriction, including without limitation
##the rights to use, copy, modify, merge, publish, distribute, sublicense,
##and/or sell copies of the Software, and to permit persons to whom the
##Software is furnished to do so, subject to the following conditions:
##
##The above copyright notice and this permission notice shall be included
##in all copies or substantial portions of the Software.
##
##THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
##OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
##FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
##THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
##OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
##ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
##OTHER DEALINGS IN THE SOFTWARE.
from __future__ import division
import copy
import graph
class DirectedGraphError(Exception): pass
class DirectedGraph(graph.Graph):
"""
A basic class for directed graphs. Multiple edges between
nodes are not supported, although self loops are. Nodes,
parent nodes and child nodes are contained in I{self.nodes},
I{self.parents} and I{self.children}. A node may be any
hashable type. An edge is a tuple (or list) of nodes, (tail, head).
Example:
>>> import digraph
>>> edge = (1, 2)
>>> g = digraph.DirectedGraph()
>>> g.add_node(node1)
>>> g.add_node(node2)
>>> g.add_edge(edge)
(1, 2)
>>> g
1 []
2 [1]
"""
def __init__(self):
"""
Initialises an empty graph. A graph consists of a set of
nodes and parents and children dictionaries containing adjacency
information.
"""
#graph.Graph.__init__(self)
self.nodes = set()
self.parents = {}
self.children = {}
def __repr__(self):
"""
User friendly graph representation.
@rtype: C{str}
@return: C{str}
"""
s = ''
for node in self.nodes:
s += str(node) + ' ' + repr([parent for parent in self.parents[node]]) + '\n'
return s
def get_edges(self):
"""
@rtype: C{list}
@return: list of graph edges
"""
return list(self.iterEdges())
def set_edges(self, value):
"""
@raise AttributeError: in all cases (read-only attribute)
"""
raise AttributeError("use addEdge method")
edges = property(get_edges, set_edges, doc="the graph edges")
def get_number_of_edges(self):
"""
@rtype: C{int}
@return: number of edges in graph
"""
return sum(self.indegree(node) for node in self.iter_nodes())
def set_number_of_edges(self, value):
"""
@raise AttributeError: in all cases (read-only attribute)
"""
raise AttributeError("cannot set number of edges")
num_edges = property(get_number_of_edges, set_number_of_edges, doc="number of edges in graph")
def indegree(self, node):
"""
Returns the indegree (number of parents) of I{node}.
@type node: hashable type
@param node: graph node
@rtype: C{int}
@return: node degree
"""
return len(self.parents[node])
def outdegree(self, node):
"""
Returns the outdegree (number of children) of I{node}.
@type node: hashable type
@param node: graph node
@rtype: C{int}
@return: node degree
"""
return len(self.children[node])
def is_root(self, node):
"""
Tests whether I{node} has any parents.
@type node: hashable type
@param node: graph node
@rtype: C{bool}
@return: True if node has no parents, otherwise False
"""
return len(self.parents[node]) == 0
def is_leaf(self, node):
"""
Tests whether I{node} has any children.
@type node: hashable type
@param node: graph node
@rtype: C{bool}
@return: True if node has no children, otherwise False
"""
return len(self.children[node]) == 0
def deepcopy(self):
"""
A deepcopy of a graph has copies of the original node
instances.
@rtype: same type as graph instance
@return: graph deepcopy
"""
copy_map = dict((node, copy.copy(node)) for node in self.nodes)
acopy = self.__class__()
for n in copy_map.values():
acopy.addNode(n)
for v, w in self.iter_edges():
acopy.add_edge((copy_map[v], copy_map[w]))
return acopy
__deepcopy__ = deepcopy
def add_node(self, node):
"""
Adds a node to the graph.
@type node: hashable type
@param node: a node
"""
super(DirectedGraph, self).add_node(node)
if not node in self.parents:
# if node has been previously added
# we want a null operation
self.parents[node] = set()
self.children[node] = set()
def del_node(self, node):
"""
Removes a node and all incident edges. Raises an error
if the node is not in the graph.
@type node: hashable type
@param node: a node
@raise ValueError: if node is not in graph
"""
super(DirectedGraph, self).del_node(node)
# remove edges
for parent in list(self.parents[node]):
self.children[parent].remove(node)
for child in list(self.children[node]):
self.parents[child].remove(node)
del self.parents[node]
del self.children[node]
def discard_node(self, node):
"""
Removes a node and all incident edges if the node
is present. Does not raise an error
if the node is not in the graph.
@type node: hashable type
@param node: a node
@raise ValueError: if node is not in graph
"""
try:
self.del_node(node)
except ValueError:
pass
def add_edge(self, edge):
"""
Adds an edge to the graph.
An exception is raised if one or both edge nodes
is not in the graph.
@type edge: C{tuple} of nodes
@param edge: an edge, or pair of nodes
@rtype: C{tuple} of nodes
@return: a pair of nodes
@raise ValueError: if node(s) not in graph
"""
p, c = edge
if not (self.has_node(p) and self.has_node(c)):
raise ValueError('node(s) not in graph')
self.children[p].add(c)
self.parents[c].add(p)
# return edge as tuple for the convenience of derived classes
return p, c
def del_edge(self, edge):
"""
Removes an edge from the graph.
An exception is raised if the edge
is not in the graph.
@type edge: C{tuple} of nodes
@param edge: a pair of nodes
@rtype: C{tuple} of nodes
@return: a pair of nodes
@raise ValueError: if node(s) not in graph
"""
p, c = edge
if not (self.has_node(p) and self.has_node(c)):
raise ValueError('node(s) not in graph')
try:
self.children[p].remove(c)
self.parents[c].remove(p)
except KeyError:
raise ValueError('(%s, %s) is not in the graph' % edge)
# return edge as tuple for the convenience of derived classes
return p, c
def discard_edge(self, edge):
"""
Removes an edge from the graph if it is present.
No exception is raised if one or both edge nodes
is not in the graph, or if the edge is not present.
@type edge: C{tuple} of nodes
@param edge: a pair of nodes
@rtype: C{tuple} of nodes
@return: a pair of nodes
@raise ValueError: if node(s) not in graph
"""
p, c = edge
try:
self.children[p].remove(c)
self.parents[c].remove(p)
except KeyError:
pass
# return edge as tuple for the convenience of derived classes
return p, c
def has_edge(self, edge):
"""
Tests whether I{edge} is in graph.
@type edge: C{tuple} of nodes
@param edge: a pair of nodes
@rtype: C{bool}
@return: True if edge is in graph, otherwise False
"""
try:
return edge[0] in self.parents[edge[1]]
except:
return False
def del_edges(self):
"""
Clears all edges (but not nodes) from the graph.
"""
for node in self.iterNodes():
self.parents[node] = set()
self.children[node] = set()
def is_subgraph(self, other):
"""
Returns True if, and only if, all nodes in self and all edges
in graph are in other.
@type other: L{DirectedGraph}
@param other: a graph
@rtype: C{bool}
@return: True if all nodes and edges in graph are in I{other}, otherwise False
"""
if not self.nodes <= set(other.nodes):
return False
for node in self.iter_nodes():
if not self.children[node] <= set(other.children[node]):
return False
return True
def __eq__(self, other):
"""
Returns True if, and only if, graph is equal to other.
@type other: L{DirectedGraph}
@param other: a graph
@rtype: C{bool}
@return: True if all nodes and edges in I{other} are in graph, otherwise False
"""
if self.nodes == set(other.nodes) and self.num_edges == other.num_edges:
for node in self.iter_nodes():
if self.children[node] != set(other.children[node]):
return False
return True
return False
def graph_sum(self, *others):
"""
Returns a new graph containing the union of the edge sets
of I{self} and the graphs in I{others}. All graphs must have equal
node sets.
@type others: iterable containing L{DirectedGraph} instances
@param others: directed graphs
@rtype: same type as graph
@return: sum of graph and graphs in I{others}
@raise DirectedGraphError: if not all graphs have equal node sets
"""
sum_ = self.copy()
for other in others:
if not sum_.nodes == set(other.nodes):
raise DirectedGraphError('graph vertex sets must be equal')
for edge in other.iter_edges():
sum_.add_edge(edge)
return sum_
def graph_union(self, *others):
"""
Returns a graph containing the union of the node sets and edge
sets of I{self} and the graphs in I{others}. All graphs must have
distinct node sets (and edge sets).
@type others: iterable containing L{DirectedGraph} instances
@param others: directed graphs
@rtype: same type as graph
@return: union of graph and graphs in I{others}
@raise DirectedGraphError: if any graphs share any nodes
"""
union = self.copy()
for other in others:
if self.nodes.intersection(other.nodes):
raise DirectedGraphError('graph vertex sets must be distinct')
for node in other.iter_nodes():
union.add_node(node)
for edge in other.iter_edges():
union.add_edge(edge)
return union
def graph_difference(self, *others):
"""
Returns a graph containing the set difference of the edges sets
of graph and the graphs in I{others}. All graphs must have equal
node sets.
@type others: iterable containing L{DirectedGraph} instances
@param others: directed graphs
@rtype: same type as graph
@return: difference of graph and graphs in I{others}
@raise DirectedGraphError: if not all graphs have equal node sets
"""
diff = self.copy()
for other in others:
if not diff.nodes == set(other.nodes):
raise DirectedGraphError('graph vertex sets must be equal')
for edge in other.iter_edges():
diff.discard_edge(edge)
return diff
def weak_components(self):
"""
Generates sets containing the sets of nodes in each weakly
connected component (U{http://mathworld.wolfram.com/WeaklyConnectedComponent.html}).
@rtype: C{generator}
@return: a generator sets of nodes for each weakly connected component
"""
import traversals
# use a bfs that ignores directions on edges
unvisited = self.nodes.copy()
adj = self.children.copy()
for node in self.nodes:
adj[node] |= self.parents[node]
while unvisited:
component = set(traversals.bfs(self, unvisited.pop(), pre=True, adj=adj))
unvisited -= component
yield component
components = weak_components
def strong_components(self):
"""
Generates sets containing the sets of nodes in each strongly
connected component (U{http://mathworld.wolfram.com/StronglyConnectedComponent.html}).
@rtype: C{generator}
@return: a generator of sets of nodes for each strongly connected component
"""
import traversals
visited = set()
order = list(traversals.dfs(self, post=True))
top_order = reversed(order)
for node in top_order:
if not node in visited:
component = set()
for node in traversals.dfs(self, node, pre=True, adj=self.parents):
if not node in visited:
component.add(node)
visited.add(node)
yield component
def transposed(self):
"""
Returns the transpose of the graph. The
transpose of a graph, I{G}, contains the
same nodes as I{G}, but with the directions
on the edges reversed.
@rtype: same type as graph
@return: the transposed graph
"""
transposed = self.__class__()
for node in self.nodes:
transposed.add_node(node)
for edge in self.iter_edges():
transposed.add_edge((edge[1], edge[0]))
return transposed
def induced_graph(self, nodes):
"""
Returns the graph induced by the nodes in I{nodes}. The
induced graph contains all nodes in I{nodes} and exactly
those edges in the original graph between nodes in I{nodes}.
precondition: all nodes in self
@type nodes: iterable containing nodes
@param nodes: nodes of induced graph
@rtype: same type as graph
@return: graph induced by I{nodes}
"""
g = self.__class__()
for node in nodes:
g.add_node(node)
for node in g.nodes:
for c in self.children[node]:
if g.has_node(c):
g.add_edge((node, c))
return g
def iter_edges(self):
"""
Returns an iterator over the graph edges.
@rtype: C{generator}
@return: a generator of edges. The edges are
generated in an arbitrary order
"""
for node in self.iter_nodes():
for c in self.children[node]:
yield node, c
def to_forest(self):
"""
Returns a L{Forest} of graphs.
@rtype: L{Forest}
@return: a forest containing (weakly) disconnected graph components
"""
from forest import Forest
graphs = [self.induced_graph(component) for component in self.weak_components()]
return Forest(graphs, 'iter_nodes')
class DirectedGraph2(DirectedGraph):
"""
A directed graph which keeps track of its roots and leaves.
"""
def __init__(self):
"""
Creates an empty digraph. The graph keeps a record of its
root and leaf nodes. i.e. Nodes with no parents / no children
respectively.
"""
DirectedGraph.__init__(self)
# root and leaf nodes are updated when
# nodes / edges are added / deleted
self.root_nodes = set()
self.leaf_nodes = set()
def copy(self):
"""
A copy of a graph shares the original node and edge instances.
@rtype: same type as graph
@return: graph copy
"""
acopy = super(DirectedGraph2, self).copy()
acopy.root_nodes = self.root_nodes.copy()
acopy.leaf_nodes = self.leaf_nodes.copy()
return acopy
def add_node(self, node):
"""
Adds a node to the graph.
@type node: hashable type
@param node: a node
"""
super(DirectedGraph2, self).add_node(node)
# until edges are added a node is both root and leaf
if self.outdegree(node) == 0:
self.leaf_nodes.add(node)
if self.indegree(node) == 0:
self.root_nodes.add(node)
def del_node(self, node):
"""
Removes a node, but not incident edges. Raises an error
if the node is not in the graph.
@type node: hashable type
@param node: a node
@raise ValueError: if node is not in graph
"""
# get copy of parents and children to update root and leaf nodes
parents = self.parents[node].copy()
children = self.children[node].copy()
# remove the node
super(DirectedGraph2, self).del_node(node)
# update root and leaf nodes
self.root_nodes.discard(node)
self.leaf_nodes.discard(node)
for node in parents:
if self.outdegree(node) == 0:
self.leaf_nodes.add(node)
for node in children:
if self.indegree(node) == 0:
self.root_nodes.add(node)
def add_edge(self, edge):
"""
Adds an edge to the graph.
I{edge} is a tuple containing two nodes. An exception
is raised if one or both edge nodes is not in the graph.
@type edge: C{tuple} of nodes
@param edge: an pair of nodes
@rtype: C{tuple} of nodes
@return: a pair of nodes
@raise ValueError: if node(s) not in graph
"""
p, c = super(DirectedGraph2, self).add_edge(edge)
self.root_nodes.discard(c)
self.leaf_nodes.discard(p)
return edge
def del_edge(self, edge):
"""
Removes an edge from the graph.
I{edge} is a tuple containing two nodes. An exception
is raised if the edge is not in the graph.
@type edge: C{tuple} of nodes
@param edge: a pair of nodes
@rtype: C{tuple} of nodes
@return: pair of nodes
@raise ValueError: if edge is not in graph
"""
p, c = super(DirectedGraph2, self).del_edge(edge)
if self.outdegree(p) == 0:
self.leaf_nodes.add(p)
if self.indegree(c) == 0:
self.root_nodes.add(c)