forked from DuncanSmith147/KVMS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraversals.py
executable file
·388 lines (361 loc) · 14.5 KB
/
traversals.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
##Copyright (c) 2011 duncan g. smith
##
##Permission is hereby granted, free of charge, to any person obtaining a
##copy of this software and associated documentation files (the "Software"),
##to deal in the Software without restriction, including without limitation
##the rights to use, copy, modify, merge, publish, distribute, sublicense,
##and/or sell copies of the Software, and to permit persons to whom the
##Software is furnished to do so, subject to the following conditions:
##
##The above copyright notice and this permission notice shall be included
##in all copies or substantial portions of the Software.
##
##THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
##OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
##FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
##THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
##OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
##ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
##OTHER DEALINGS IN THE SOFTWARE.
"""Tree / graph traversal and other related algorithms"""
from __future__ import division
from collections import defaultdict
class CycleError(Exception): pass
def bfs(graph, root=None, pre=False, hops=False, edges=False, adj=None, sentinels=None, bool_func=None):
"""
Returns a breadth first search generator for I{graph}.
If I{root} is C{None} the search starts at an arbitrary
node and continues until all graph nodes are visited.
Depending on the boolean arguments the generator might
yield all, or none of the nodes in visited order, the
shortest distances (or hops) from the root node, and /
or the visited graph edges. Hops are yielded immediately
after the relevant node.
@type graph: L{undirected<udgraph.UndirectedGraph>} or
L{directed<digraph.DirectedGraph>} graph
@param graph: graph
@type root: hashable type
@param root: root node for search. If None the search
starts at an arbitrary node and continues
until all graph nodes are visited
@type pre: C{bool}
@param pre: if True, yields nodes in visited order
@type hops: C{bool}
@param hops: if True, yields the shortest distances from
the root to the generated node
@type edges: C{bool}
@param edges: if True, yields edges of BFS tree
@type adj: C{dict} or None
@param adj: mapping of nodes to sets of 'nearest reachable'
nodes. If no argument is provided graph.neighbours
will be used for undirected graphs, or graph.children
for directed graphs
@type sentinels: a container of nodes, or None
@param sentinels: sentinel nodes
@type bool_func: function, or None
@param bool_func: a function that takes a node as argument and returns
I{True} if the node should by yielded, I{False} if
the node should be treated as a sentinel
@rtype: C{generator}
@return: a generator of nodes / edges in breadth first search order
@note: as calls to I{bool_func} might have side-effects it is ensured
that, if defined, it is called exactly once for each node.
I{bool_func} is never called with nodes in I{sentinels} as
argument
"""
if adj is None:
try:
adj = graph.neighbours
except AttributeError:
adj = graph.children
if root is None:
roots = set(graph.nodes)
else:
roots = set([root])
if sentinels:
visited = set(sentinels)
else:
visited = set()
def bfs(node):
visited.add(node)
if bool_func and not bool_func(node):
raise StopIteration
nodes = [(node, 0)]
for node, hop in nodes:
if pre:
yield node
if hops:
yield hop
for n in adj[node]:
if n in visited:
continue
elif bool_func and not bool_func(n):
continue
nodes.append((n, hop + 1))
if edges:
yield node, n
visited.update(adj[node])
for root in roots:
if not root in visited:
for item in bfs(root):
yield item
def dfs(graph, root=None, pre=False, post=False, edges=False, adj=None, sentinels=None, bool_func=None):
"""
Returns a depth first search generator for I{graph}.
If I{root} is C{None} the search starts at an arbitrary
node and continues until all graph nodes are visited.
Depending on the boolean arguments the generator might
yield all, or none of the nodes in visited order, finished
order, and / or the visited graph edges.
For example, if all the boolean arguments except I{edges}
are True then each node would be yielded twice, their order
corresponding to the DFS I{time-stamp} structure
(U{http://www.cs.ust.hk/faculty/golin/COMP271Sp03/Notes/MyL08.pdf}).
@type graph: L{undirected<udgraph.UndirectedGraph>} or
L{directed<digraph.DirectedGraph>} graph
@param graph: graph
@type root: hashable type
@param root: root node for search. If None the search
starts at an arbitrary node and continues
until all graph nodes are visited
@type pre: C{bool}
@param pre: if True, yields nodes in visited order
@type post: C{bool}
@param post: if True, yields nodes in finished order
@type edges: C{bool}
@param edges: if True, yields edges of DFS tree
@type adj: C{dict} or None
@param adj: mapping of nodes to sets of 'nearest reachable'
nodes. If no argument is provided graph.neighbours
will be used for undirected graphs, or graph.children
for directed graphs
@type sentinels: a container of nodes, or None
@param sentinels: sentinel nodes
@type bool_func: function, or None
@param bool_func: a function that takes a node as argument and returns
I{True} if the node should by yielded, I{False} if
the node should be treated as a sentinel
@rtype: C{generator}
@return: a generator of nodes / edges in depth first search order
@note: as calls to bool_func might have side-effects it is ensured
that, if defined, it is called exactly once for each node.
I{bool_func} is never called with nodes in I{sentinels} as
argument
"""
if adj is None:
try:
adj = graph.neighbours
except AttributeError:
adj = graph.children
if root is None:
roots = set(graph.nodes)
else:
roots = set([root])
if sentinels:
visited = set(sentinels)
else:
visited = set()
def dfs(node, yield_it=None):
visited.add(node)
if yield_it is False:
raise StopIteration
elif yield_it is None:
if bool_func and not bool_func(node):
raise StopIteration
if pre:
yield node
for adj_node in adj[node]:
if not adj_node in visited:
yield_it = None
if edges:
if bool_func:
yield_it = bool_func(adj_node)
if yield_it:
yield node, adj_node
else:
yield node, adj_node
for n in dfs(adj_node, yield_it):
yield n
if post:
yield node
for root in roots:
if not root in visited:
for item in dfs(root):
yield item
def topological_sort(graph):
"""
Generates the nodes of the graph in a topological ordering.
An alternative is the reverse order of the nodes in a
postorder dfs.
@type graph: L{directed graph<digraph.DirectedGraph>}
@param graph: a directed graph
@rtype: C{generator}
@return: a generator of nodes in topological order
@raise CycleError: if the graph contains a cycle
"""
try:
queue = list(graph.root_nodes)
except AttributeError:
queue = [node for node in graph.nodes if graph.indegree(node) == 0]
nodes = graph.nodes.difference(queue)
indegrees = {} # a dictionary to hold 'temporary' inDegrees
for node in nodes:
indegrees[node] = graph.indegree(node)
for node in queue:
yield node
for child in graph.children[node]:
indegrees[child] -= 1
if indegrees[child] == 0:
del indegrees[child]
queue.append(child)
if indegrees:
raise CycleError('the graph contains a cycle')
def kruskal(graph, weighted_edges):
"""
Returns a generator of the edges of a minimal spanning
tree of the weighted undirected I{graph} with weights
and edges in I{weighted_edges}.
@type graph: L{undirected<udgraph.UndirectedGraph>} or
L{directed<digraph.DirectedGraph>} graph
@param graph: graph
@type weighted_edges: iterable of C{tuple}s
@param weighted_edges: an iterable of (weight, edge) tuples,
an edge being a tuple of nodes
@rtype: generator
@return: generator of minimal spanning tree
edges
"""
from union_find import UnionFindTree
weighted_edges = list(weighted_edges)
weighted_edges.sort()
uf = UnionFindTree()
for node in graph.iterNodes():
uf.add(node)
for weight, edge in weighted_edges:
if uf.union(*edge):
yield edge
if uf.size == 1:
raise StopIteration
def reduction_closure(graph):
# for a DAG
# returns a pair of mappings of nodes to children
# the first contains the edges that must be
# removed from graph to produce its transitive reduction
# the second contains the edges that are
# contained in the transitive closure (including existing graph edges)
# The transitive reduction is the unique (in the case of a DAG)
# smallest subgraph (with the same node set) that has the same
# transitive closure.
# The transitive closure is the graph produced by adding edges
# from each node to each of its descendants
reduction = {}
closure = {}
for v in dfs(graph, post=True):
descendants = set()
to_remove = set()
children = graph.children[v]
for child in children:
deleted = False
# check for membership in other children
for other in children.difference([child]) - to_remove:
if child in closure[other]:
to_remove.add(child)
deleted = True
break
if not deleted:
descendants |= closure[child]
descendants |= children
reduction[v] = to_remove
closure[v] = descendants
return reduction, closure
def maintain_reduction_add_node(graph, node, func):
# maintains a transitive reduction on node addition
# func takes a pair of nodes v, w as arguments and
# returns True if relation holds for (v,w), False if
# relation holds for (w,v), and None otherwise
leaves = set()
roots = set()
nodes = set(graph.nodes)
visited = set()
while nodes:
x = nodes.pop()
val = func(x, node)
if val:
leaves.add(x)
search = dfs(graph, x, pre=True, adj=graph.parents, sentinels=visited) # unvisited ancestors
next(search) # don't want to yield x
for n in search:
visited.add(n)
nodes.discard(n) # might have been added to leaves and not visited
elif val == False:
roots.add(x)
search = dfs(graph, x, pre=True, sentinels=visited) # unvisited descendants
next(search)
for n in search:
visited.add(n)
nodes.discard(n)
leaves = leaves - visited
roots = roots - visited
# update graph
graph.addNode(node)
for leaf in leaves:
graph.addEdge((leaf, node))
for root in roots:
graph.addEdge((node, root))
for leaf in leaves:
for root in roots:
graph.discardEdge((leaf, root))
###############################
def test_add_node(n):
# generate some random strings
import random
import digraph
letters = 'abcdefghijklmnopqrstuvwxyz'
strings = []
for _ in range(n):
strings.append(''.join(random.sample(letters, 6)))
g = digraph.DirectedGraph()
def func(v,w):
if v[0] == w[0]:
return None
return v[0] < w[0]
for s in strings:
try:
maintain_reduction_add_node(g, s, func)
except:
print
print 'strings', strings
print
raise
to_file(g, '/home/duncan/add_node.png')
return g
def test_add_node2(n):
# generate some random strings
import random
import digraph
letters = 'abcdefghijklm'
strings = []
for _ in range(n):
samp_size = random.randint(1, 10)
strings.append(''.join(sorted(random.sample(letters, samp_size))))
g = digraph.DirectedGraph()
def func(v,w):
if set(v).issubset(set(w)) and len(v) < len(w):
return True
elif set(v).issuperset(set(w)) and len(v) > len(w):
return False
return None
for s in strings:
try:
maintain_reduction_add_node(g, s, func)
except:
print
print 'strings', strings
print
raise
to_file(g, '/home/duncan/add_node_2.png')
return g
def to_file(g, filename, directed=True):
import dot
import digraph
dot.graph2image(g, filename, directed, filename[-3:])