-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtextrank_algorithm.py
132 lines (94 loc) · 3.89 KB
/
textrank_algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import numpy as np
def textrank(
wanted_words_in_text,
unique_wanted_words_in_text,
):
unique_wanted_words_in_text_size = len(unique_wanted_words_in_text)
connection_matrix = np.zeros(
(unique_wanted_words_in_text_size, unique_wanted_words_in_text_size),
dtype=np.float32,
)
word_value = np.zeros(unique_wanted_words_in_text_size, dtype=np.float32)
window_size = 2
is_index_available = []
for i in range(0, unique_wanted_words_in_text_size):
word_value[i] = 1
for j in range(0, unique_wanted_words_in_text_size):
if j == i:
connection_matrix[i][j] = 0
else:
for window_start in range(
0, (len(wanted_words_in_text) - window_size + 1)
):
window_end = window_start + window_size
window = wanted_words_in_text[window_start:window_end]
if (unique_wanted_words_in_text[i] in window) and (
unique_wanted_words_in_text[j] in window
):
index_i = window_start + window.index(
unique_wanted_words_in_text[i]
)
index_j = window_start + window.index(
unique_wanted_words_in_text[j]
)
if [index_i, index_j] not in is_index_available:
connection_matrix[i][j] = connection_matrix[i][j] + 1 / abs(
index_i - index_j
)
is_index_available.append([index_i, index_j])
print("is_matrix_available: \n" + str(is_index_available))
print()
print("Connection Matrix: \n" + str(connection_matrix))
print()
connection_count_matrix = np.zeros(
unique_wanted_words_in_text_size, dtype=np.float32
)
for i in range(0, unique_wanted_words_in_text_size):
for j in range(0, unique_wanted_words_in_text_size):
connection_count_matrix[i] += connection_matrix[i][j]
print()
print("Connection Count Matrix: \n" + str(connection_count_matrix))
maximum_iteration = 100
d = 0.85
threshold_value = 0.0001
iteration_info = 1
for iter in range(0, maximum_iteration):
prev_word_value = np.copy(word_value)
for i in range(0, unique_wanted_words_in_text_size):
total = 0
for j in range(0, unique_wanted_words_in_text_size):
if connection_matrix[i][j] != 0:
total += (
connection_matrix[i][j] / connection_count_matrix[j]
) * word_value[j]
word_value[i] = (1 - d) + d * total
if np.sum(np.fabs(prev_word_value - word_value)) <= threshold_value:
print()
print(str(iteration_info) + " iteration's done.\n")
break
iteration_info += 1
for i in range(0, unique_wanted_words_in_text_size):
print(
"Word Value -> "
+ unique_wanted_words_in_text[i]
+ ": "
+ str(round(word_value[i], 3))
)
sorted_word = np.flip(np.argsort(word_value), 0)
if 0 < unique_wanted_words_in_text_size <= 30:
keyword_limit = 2
elif unique_wanted_words_in_text_size <= 60:
keyword_limit = 3
elif unique_wanted_words_in_text_size <= 90:
keyword_limit = 4
else:
keyword_limit = 5
print()
print("Sorted Candidate keywords:\n")
sorted_key_words = []
if keyword_limit <= unique_wanted_words_in_text_size:
for i, j in zip(range(keyword_limit), range(keyword_limit)):
print(str(f"{j + 1} -> " + unique_wanted_words_in_text[sorted_word[i]]))
sorted_key_words.append(unique_wanted_words_in_text[sorted_word[i]])
return sorted_key_words
print()