-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
94 lines (76 loc) · 2.48 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import cv2
import gradio as gr
import torch
from torchvision.transforms import v2
from model import ResNet18
from preprocessing import DATASET_MEAN, DATASET_STD
device = "cuda" if torch.cuda.is_available() else "cpu"
model = ResNet18(1, 7)
model.load_state_dict(torch.load("./models/model.pth", map_location=device))
model.to(device)
model.eval()
face_cascade = cv2.CascadeClassifier("./models/haarcascade_frontalface_default.xml")
class_list = ["angry", "disgust", "fear", "happy", "neutral", "sad", "surprise"]
preprocess = v2.Compose(
[
v2.Grayscale(),
v2.PILToTensor(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=(DATASET_MEAN,), std=(DATASET_STD,)),
]
)
def get_probs(image):
inp = preprocess(torch.tensor(image).permute(2, 0, 1).unsqueeze(0))
inp = inp.to(device)
pred = model(inp).squeeze()
probs = torch.softmax(pred, 0).cpu()
return probs
def draw_labels(image, cords: tuple, label: str):
x, y, w, h = cords
cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 2)
image = cv2.putText(
image,
label,
(x, y),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(0, 255, 0),
2,
cv2.LINE_AA,
)
return image
def predict(image):
if image is not None:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.1, 4)
for cords in faces:
x, y, w, h = cords
resized = cv2.resize(image[y : y + h, x : x + w], (48, 48), cv2.INTER_AREA)
probs = get_probs(resized)
label = class_list[probs.argmax(0).item()]
image = draw_labels(image, cords, label)
return image
webcam_interface = gr.Interface(
predict,
inputs=gr.Image(sources=["webcam"], streaming=True, label="Input webcam"),
outputs=gr.Image(label="Output video"),
live=True,
title="Webcam mode",
description="Created by Czarna Magia AI Student Club",
theme=gr.themes.Soft(),
)
img_interface = gr.Interface(
predict,
inputs=gr.Image(sources=["webcam", "upload", "clipboard"], label="Input image"),
outputs=gr.Image(label="Output image"),
title="Image upload mode",
description="Created by Czarna Magia AI Student Club",
theme=gr.themes.Soft(),
)
iface = gr.TabbedInterface(
interface_list=[img_interface, webcam_interface],
tab_names=["Image upload", "Webcam"],
title="Face Expression Recognizer",
theme=gr.themes.Soft(),
)
iface.launch()