From b8e3277f0e847876ca8de551ef873c6b6289d4ee Mon Sep 17 00:00:00 2001 From: atticuszz <1831768457@qq.com> Date: Fri, 3 May 2024 21:31:33 +0800 Subject: [PATCH] fix: make pybind_align to fit c++ interface and add numpy doc for align functions --- src/python/align.cpp | 112 +++++++++++++++++++++++++++++++++++++------ 1 file changed, 98 insertions(+), 14 deletions(-) diff --git a/src/python/align.cpp b/src/python/align.cpp index 07b0518..0022e8e 100644 --- a/src/python/align.cpp +++ b/src/python/align.cpp @@ -30,7 +30,7 @@ void define_align(py::module& m) { const std::string& registration_type, double voxel_resolution, double downsampling_resolution, - double max_corresponding_distance, + double max_correspondence_distance, int num_threads) { if (target_points.cols() != 3 && target_points.cols() != 4) { std::cerr << "target_points must be Nx3 or Nx4" << std::endl; @@ -57,7 +57,7 @@ void define_align(py::module& m) { setting.voxel_resolution = voxel_resolution; setting.downsampling_resolution = downsampling_resolution; - setting.max_correspondence_distance = max_corresponding_distance; + setting.max_correspondence_distance = max_correspondence_distance; setting.num_threads = num_threads; std::vector target(target_points.rows()); @@ -90,8 +90,35 @@ void define_align(py::module& m) { py::arg("registration_type") = "GICP", py::arg("voxel_resolution") = 1.0, py::arg("downsampling_resolution") = 0.25, - py::arg("max_corresponding_distance") = 1.0, - py::arg("num_threads") = 1); + py::arg("max_correspondence_distance") = 1.0, + py::arg("num_threads") = 1, + R"pbdoc( + Align two point clouds using various ICP-like algorithms. + + Parameters + ---------- + target_points : NDArray[np.float64] + Nx3 or Nx4 matrix representing the target point cloud. + source_points : NDArray[np.float64] + Nx3 or Nx4 matrix representing the source point cloud. + init_T_target_source : np.ndarray[np.float64] + 4x4 matrix representing the initial transformation from target to source. + registration_type : str = 'GICP' + Type of registration algorithm to use ('ICP', 'PLANE_ICP', 'GICP', 'VGICP'). + voxel_resolution : float = 1.0 + Resolution of voxels used for downsampling. + downsampling_resolution : float = 0.25 + Resolution for downsampling the point clouds. + max_correspondence_distance : float = 1.0 + Maximum distance for matching points between point clouds. + num_threads : int = 1 + Number of threads to use for parallel processing. + + Returns + ------- + RegistrationResult + Object containing the final transformation matrix and convergence status. + )pbdoc"); // align m.def( @@ -101,26 +128,60 @@ void define_align(py::module& m) { const PointCloud::ConstPtr& source, KdTree::ConstPtr target_tree, const Eigen::Matrix4d& init_T_target_source, + const std::string& registration_type, double max_correspondence_distance, - int num_threads, - int max_iterations) { - Registration registration; - registration.rejector.max_dist_sq = max_correspondence_distance * max_correspondence_distance; - registration.reduction.num_threads = num_threads; - registration.optimizer.max_iterations = max_iterations; + int num_threads) { + RegistrationSetting setting; + if (registration_type == "ICP") { + setting.type = RegistrationSetting::ICP; + } else if (registration_type == "PLANE_ICP") { + setting.type = RegistrationSetting::PLANE_ICP; + } else if (registration_type == "GICP") { + setting.type = RegistrationSetting::GICP; + } else { + std::cerr << "invalid registration type:" << registration_type << std::endl; + return RegistrationResult(Eigen::Isometry3d::Identity()); + } + setting.max_correspondence_distance = max_correspondence_distance; + setting.num_threads = num_threads; if (target_tree == nullptr) { target_tree = std::make_shared>(target, KdTreeBuilderOMP(num_threads)); } - return registration.align(*target, *source, *target_tree, Eigen::Isometry3d(init_T_target_source)); + return align(*target, *source, *target_tree, Eigen::Isometry3d(init_T_target_source), setting); }, py::arg("target"), py::arg("source"), py::arg("target_tree") = nullptr, py::arg("init_T_target_source") = Eigen::Matrix4d::Identity(), + py::arg("registration_type") = "GICP", py::arg("max_correspondence_distance") = 1.0, py::arg("num_threads") = 1, - py::arg("max_iterations") = 20); + R"pbdoc( + Align two point clouds using specified ICP-like algorithms, utilizing point cloud and KD-tree inputs. + + Parameters + ---------- + target : PointCloud::ConstPtr + Pointer to the target point cloud. + source : PointCloud::ConstPtr + Pointer to the source point cloud. + target_tree : KdTree::ConstPtr, optional + Pointer to the KD-tree of the target for nearest neighbor search. If nullptr, a new tree is built. + init_T_target_source : NDArray[np.float64] + 4x4 matrix representing the initial transformation from target to source. + registration_type : str = 'GICP' + Type of registration algorithm to use ('ICP', 'PLANE_ICP', 'GICP'). + max_corresponding_distance : float = 1.0 + Maximum distance for corresponding point pairs. + num_threads : int = 1 + Number of threads to use for computation. + + Returns + ------- + RegistrationResult + Object containing the final transformation matrix and convergence status. + )pbdoc"); // align m.def( @@ -144,5 +205,28 @@ void define_align(py::module& m) { py::arg("init_T_target_source") = Eigen::Matrix4d::Identity(), py::arg("max_correspondence_distance") = 1.0, py::arg("num_threads") = 1, - py::arg("max_iterations") = 20); -} \ No newline at end of file + py::arg("max_iterations") = 20, + R"pbdoc( + Align two point clouds using voxel-based GICP algorithm, utilizing a Gaussian Voxel Map. + + Parameters + ---------- + target_voxelmap : GaussianVoxelMap + Voxel map constructed from the target point cloud. + source : PointCloud + Source point cloud to align to the target. + init_T_target_source : NDArray[np.float64] + 4x4 matrix representing the initial transformation from target to source. + max_correspondence_distance : float = 1.0 + Maximum distance for corresponding point pairs. + num_threads : int = 1 + Number of threads to use for computation. + max_iterations : int = 20 + Maximum number of iterations for the optimization algorithm. + + Returns + ------- + RegistrationResult + Object containing the final transformation matrix and convergence status. + )pbdoc"); +}