diff --git a/out/PolynomialIdentityInvolvingBTandFaulhaber.pdf b/out/PolynomialIdentityInvolvingBTandFaulhaber.pdf index 5b4a631..fcb0e9a 100644 Binary files a/out/PolynomialIdentityInvolvingBTandFaulhaber.pdf and b/out/PolynomialIdentityInvolvingBTandFaulhaber.pdf differ diff --git a/src/sections/01_introduction/footnote.tex b/src/sections/01_introduction/footnote.tex new file mode 100644 index 0000000..a8790e1 --- /dev/null +++ b/src/sections/01_introduction/footnote.tex @@ -0,0 +1,5 @@ +One may assume that it is possible to reach the form $n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^0 (n-k)^0 + \mathbf{A}_{m,1}(n-k)^1 ++ \cdots + \mathbf{A}_{m,m} k^m (n-k)^m$ simply taking finite differences of the polynomial $n^{2m+1}$ up to order of $2m+1$ +and interpolating it backwards similarly as shown in~\eqref{eq:cubes_interpolation}. +However, my observations do not provide any evidence of such assumption. +Interestingly enough is that we could have been arrived to the pure differential approach of the relation~\eqref{eq:odd_power_conjecture} then. \ No newline at end of file diff --git a/src/sections/01_introduction/introduction.tex b/src/sections/01_introduction/introduction.tex index d45f6e9..469e4d3 100644 --- a/src/sections/01_introduction/introduction.tex +++ b/src/sections/01_introduction/introduction.tex @@ -17,16 +17,21 @@ \end{center} \caption{Table of finite differences of the polynomial $n^3$.} \label{tab:table} \end{table} -We can observe easily that finite differences of the polynomial $n^3$ may be expressed according +We can observe easily that finite differences +\footnote{\input{sections/01_introduction/footnote}} +of the polynomial $n^3$ may be expressed according to the following relation, via rearrangement of the terms -\begin{align*} - \Delta(0^3) &= 1+6 \cdot 0 \\ - \Delta(1^3) &= 1+6\cdot0+6\cdot1 \\ - \Delta(2^3) &= 1+6\cdot0+6\cdot1+6\cdot2 \\ - \Delta(3^3) &= 1+6\cdot0+6\cdot1+6\cdot2+6\cdot3 \\ - &\; \; \vdots \\ - \Delta(n^3) &= 1+6\cdot0+6\cdot1+6\cdot2+6\cdot3+\cdots+6\cdot n -\end{align*} +\begin{align} + \label{eq:cubes_interpolation} + \begin{split} + \Delta(0^3) &= 1+6 \cdot 0 \\ + \Delta(1^3) &= 1+6\cdot0+6\cdot1 \\ + \Delta(2^3) &= 1+6\cdot0+6\cdot1+6\cdot2 \\ + \Delta(3^3) &= 1+6\cdot0+6\cdot1+6\cdot2+6\cdot3 \\ + &\; \; \vdots \\ + \Delta(n^3) &= 1+6\cdot0+6\cdot1+6\cdot2+6\cdot3+\cdots+6\cdot n + \end{split} +\end{align} Furthermore, the polynomial $n^3$ is identical to \begin{align*} n^3 &= [1+6\cdot0]+[1+6\cdot0+6\cdot1]+[1+6\cdot0+6\cdot1+6\cdot2]+\cdots \\ @@ -52,8 +57,9 @@ Therefore, let be a conjecture \begin{conj} For every $n\geq 1, \; n,m\in\mathbb{N}$ there are coefficients $\coeffA{m}{0}, \coeffA{m}{1}, \ldots, \coeffA{m}{m}$ such that - \begin{equation*} + \begin{equation} + \label{eq:odd_power_conjecture} n^{2m+1} = \sum_{k=1}^{n} \coeffA{m}{0} k^0 (n-k)^0 + \coeffA{m}{1} (n-k)^1 + \cdots + \coeffA{m}{m} k^m (n-k)^m - \end{equation*} + \end{equation} \end{conj} \ No newline at end of file