-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathequilibrium.jl
427 lines (339 loc) · 13.5 KB
/
equilibrium.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
module ImpvolEquilibrium
export period_wrapper, coerce_parameters!, rotate_sectors, CES_price_index, array_transpose, remove_shock!
using Logging, Base.Test
include("utils.jl")
parameters = Dict{Symbol, Any}()
# for matrix conformity, store all variables in a 4-dimensional array:
# mnjt: destination, source, sector, time
# per-period random variables are stored as
# mnjs: destination, source, sector, state
function report(A)
display(A[1,1:2,end-1:end,1])
sleep(1)
end
function where_in_simplex(labor_share, s)
l = labor_share[:,:,:,s]
return (minimum(l), ind2sub(l,indmin(l)))
end
function biggest_gap(x1, x2, s)
y = (x1 .- x2)[:,:,:,:] .^ 2
return (maximum(y), ind2sub(y,indmax(y)))
end
function expected_value(y)
_, _, _, S = size(y)
if S==1
return y[:,:,:,1]
else
# ignore first realization of S
return mean(y[:,:,:,2:end], 4)
end
end
function rotate_sectors(A, y)
# y may be a time series variable or a random variable
M, N, J, T = size(y)
K = size(A,1)
B = zeros(M,N,K,T)
for m=1:M
for n=1:N
for t=1:T
B[m,n,:,t] = A * y[m,n,:,t]
end
end
end
return B
end
function p_distance(p1, p2, theta)
s1 = p1 .^ (-theta) ./ sum(p1 .^ (-theta), 2)
s2 = p2 .^ (-theta) ./ sum(p2 .^ (-theta), 2)
return share_distance(s1, s2)
end
function share_distance(p1, p2)
return mean((p1 .- p2) .^ 2) .^ 0.5
end
function deflate_all_nominal_variables!(random_variables, parameters, t)
compute_price_index!(random_variables, parameters, t)
US_price_index = random_variables[:P_ns][1:1,end:end,1:1,:]
for variable in [:R_njs, :rho_njs, :w_njs, :P_ns, :input_price_njs, :P_njs, :E_mjs]
random_variables[variable] = random_variables[variable] ./ US_price_index
end
end
function free_trade_sector_shares!(parameters)
N, J, T = parameters[:N], parameters[:J], parameters[:T]
gamma_jk = parameters[:gamma_jk]
beta_j = parameters[:beta_j]
alpha_jt = parameters[:nu_njt] ./ sum(parameters[:nu_njt], 3)
revenue_shares = zeros(1,1,J,T)
for t=1:T
revenue_shares[1,1,:,t] = eigen_share(alpha_jt[1,1,:,t]*beta_j[1,1,:,1]' + gamma_jk)
end
parameters[:sector_shares] = revenue_shares
end
function input_price_index!(random_variables, parameters)
P = random_variables[:P_njs]
random_variables[:input_price_njs] = exp.(rotate_sectors(parameters[:gamma_jk]', log.(P)))
end
function compute_price!(random_variables, parameters, t)
theta = parameters[:theta]
kappa = non_random_variable(parameters[:kappa_mnjt], t)
rho_njs = random_variables[:rho_njs]
random_variables[:P_njs] = array_transpose(sum((rho_njs ./ kappa) .^ (-theta), 2) .^ (-1/theta))
end
function CES_price_index(alpha, P_njs, sigma)
return sum(alpha .* P_njs .^ (1-sigma), 3) .^ (1/(1-sigma))
end
function compute_price_index!(random_variables, parameters, t)
nu = non_random_variable(parameters[:nu_njt], t)
alpha = nu ./ sum(nu, 3)
P_njs = random_variables[:P_njs]
sigma = parameters[:sigma]
# Cobb-Douglas is a special case when sigma ~ 1
random_variables[:P_ns] = CES_price_index(alpha, P_njs, sigma)
end
function free_trade_country_shares!(random_variables, parameters)
free_trade_sector_shares!(parameters)
A_njs = random_variables[:A_njs]
L_njs = random_variables[:L_njs]
theta = parameters[:theta]
beta_j = parameters[:beta_j]
d_njs = A_njs .^ (theta ./ (1 + theta*beta_j)) .* L_njs .^ (theta .* beta_j ./ (1 + theta*beta_j))
random_variables[:d_njs_free] = d_njs ./ sum(d_njs,2)
end
function free_trade_labor_shares!(random_variables, parameters, t)
free_trade_country_shares!(random_variables, parameters)
d_njs = random_variables[:d_njs_free]
beta_j = parameters[:beta_j]
E_jt = non_random_variable(parameters[:sector_shares], t)
y_njs = beta_j .* d_njs .* E_jt
random_variables[:L_njs_free] = y_njs ./ sum(y_njs, 3)
end
function free_trade_wages!(random_variables, parameters, t)
free_trade_country_shares!(random_variables, parameters)
d_njs = random_variables[:d_njs_free]
L_njs = random_variables[:L_njs]
beta_j = parameters[:beta_j]
E_wt = non_random_variable(parameters[:sector_shares], t) .* non_random_variable(parameters[:nominal_world_expenditure], t)
random_variables[:w_njs] = beta_j .* d_njs .* E_wt ./ L_njs
end
function free_trade_prices!(random_variables, parameters, t)
free_trade_country_shares!(random_variables, parameters)
beta_j = parameters[:beta_j]
theta = parameters[:theta]
d_njs = random_variables[:d_njs_free]
w_njs = random_variables[:w_njs]
xi = parameters[:xi]
B_j = parameters[:B_j]
A_njs = random_variables[:A_njs]
gamma_jk = parameters[:gamma_jk]'
random_variables[:P_njs] = exp.(rotate_sectors(inv(eye(gamma_jk)-gamma_jk), log.(xi * d_njs .^(1/theta) .* B_j .* (w_njs .^beta_j) ./ A_njs)))
random_variables[:rho_njs] = random_variables[:P_njs] ./ d_njs .^(1/theta)
input_price_index!(random_variables, parameters)
end
function compute_trade_shares!(random_variables, parameters, t)
theta = parameters[:theta]
kappa = non_random_variable(parameters[:kappa_mnjt], t)
rho_njs = random_variables[:rho_njs]
P_mjs = array_transpose(random_variables[:P_njs])
random_variables[:d_mnjs] = (rho_njs ./ kappa ./ P_mjs) .^ (-theta)
end
function compute_wage!(random_variables, parameters)
input_price_index!(random_variables, parameters)
rho_njs = random_variables[:rho_njs]
input_price_njs = random_variables[:input_price_njs]
beta_j = parameters[:beta_j]
B_j = parameters[:B_j]
xi = parameters[:xi]
A_njs = random_variables[:A_njs]
random_variables[:w_njs] = (rho_njs .* A_njs ./ input_price_njs ./ (xi * B_j)) .^ (1 ./ beta_j)
end
function compute_revenue!(random_variables, parameters)
w_njs = random_variables[:w_njs]
L_njs = random_variables[:L_njs]
beta_j = parameters[:beta_j]
random_variables[:R_njs] = w_njs .* L_njs ./ beta_j
end
function CES_share(nu, price, sigma)
temp = nu .* price .^ (1-sigma)
return temp ./ sum(temp, 3)
end
function compute_expenditure_shares!(random_variables, parameters, t)
R_nks = random_variables[:R_njs]
beta_j = parameters[:beta_j]
gamma_jk = parameters[:gamma_jk]
nu = non_random_variable(parameters[:nu_njt], t)
# encompass CES and Cobb-Douglas
alpha_njt = CES_share(nu, random_variables[:P_njs], parameters[:sigma])
S_nt = non_random_variable(parameters[:S_nt], t)
expenditure = sum(R_nks, 3) .- S_nt
wagebill_ns = rotate_sectors(beta_j[:]', R_nks)
intermediate_njs = rotate_sectors(gamma_jk, R_nks)
e_njs = alpha_njt .* wagebill_ns .+ intermediate_njs .- alpha_njt .* S_nt
# trade imbalance may make it negative
e_njs = max.(parameters[:numerical_zero], e_njs)
random_variables[:e_mjs] = array_transpose(e_njs ./ sum(e_njs, 3))
end
function compute_real_gdp!(random_variables, parameters, t)
compute_price_index!(random_variables, parameters, t)
w_njs = random_variables[:w_njs]
L_njs = random_variables[:L_njs]
P_ns = random_variables[:P_ns]
random_variables[:real_GDP] = w_njs .* L_njs ./ P_ns
end
function fixed_expenditure_shares!(random_variables, parameters, t)
R_mjs = array_transpose(random_variables[:R_njs])
expenditure = sum(R_mjs, 3) .- array_transpose(non_random_variable(parameters[:S_nt], t))
random_variables[:E_mjs] = random_variables[:e_mjs] .* max.(parameters[:numerical_zero], expenditure)
end
function shadow_price_step(random_variables, parameters, t)
theta = parameters[:theta]
E_mjs = random_variables[:E_mjs]
R_njs = random_variables[:R_njs]
kappa_mnjt = non_random_variable(parameters[:kappa_mnjt], t)
P_mjs = array_transpose(random_variables[:P_njs])
return sum( (kappa_mnjt .* P_mjs) .^ theta .* E_mjs ./ R_njs, 1) .^ (1/theta)
end
function starting_values!(random_variables, parameters, t)
free_trade_wages!(random_variables, parameters, t)
free_trade_prices!(random_variables, parameters, t)
free_trade_labor_shares!(random_variables, parameters, t)
compute_revenue!(random_variables, parameters)
compute_expenditure_shares!(random_variables, parameters, t)
fixed_expenditure_shares!(random_variables, parameters, t)
deflate_all_nominal_variables!(random_variables, parameters, t)
end
function inner_loop!(random_variables, parameters, t)
debug("------ BEGIN Inner loop")
lambda = parameters[:inner_step_size]
dist = 999
k = 1
while (dist > parameters[:inner_tolerance]) && (k <= parameters[:max_iter_inner])
new_rho = shadow_price_step(random_variables, parameters, t)
dist = p_distance(new_rho, random_variables[:rho_njs], parameters[:theta])
debug("-------- Inner ", k, ": ", dist)
random_variables[:rho_njs] = new_rho
compute_price!(random_variables, parameters, t)
compute_wage!(random_variables, parameters)
old_R = random_variables[:R_njs]
compute_revenue!(random_variables, parameters)
random_variables[:R_njs] = lambda*random_variables[:R_njs] + (1-lambda)*old_R
fixed_expenditure_shares!(random_variables, parameters, t)
deflate_all_nominal_variables!(random_variables, parameters, t)
k = k+1
end
warn("inner: ", k-1)
debug("------ END Inner loop")
end
function middle_loop!(random_variables, parameters, t)
debug("---- BEGIN Middle loop")
dist = 999
k = 1
old_expenditure_shares = random_variables[:e_mjs]
while (dist > parameters[:middle_tolerance]) && (k <= parameters[:max_iter_middle])
inner_loop!(random_variables, parameters, t)
compute_expenditure_shares!(random_variables, parameters, t)
dist = share_distance(random_variables[:e_mjs][:,:,1:end-1,:], old_expenditure_shares[:,:,1:end-1,:])
random_variables[:e_mjs] = parameters[:middle_step_size]*random_variables[:e_mjs]+(1-parameters[:middle_step_size])*old_expenditure_shares
info("------ Middle ", k, ": ", dist)
old_expenditure_shares = random_variables[:e_mjs]
k = k+1
end
debug("---- END Middle loop")
end
function adjustment_loop!(random_variables, L_nj_star, parameters, t)
function max_step_size(x0, direction)
nulla = parameters[:numerical_zero]
negative_entries = min.(direction, -nulla)
return minimum(nulla - x0 ./ negative_entries, 3)
end
function evaluate_utility(random_variables, L_nj_star, parameters, t)
random_variables[:L_njs] = max.(parameters[:numerical_zero], random_variables[:L_njs])
random_variables[:L_njs] = random_variables[:L_njs] ./ sum(random_variables[:L_njs], 3)
middle_loop!(random_variables, parameters, t)
w_ns = sum(random_variables[:w_njs] .* random_variables[:L_njs], 3)
wage_gap = random_variables[:w_njs] ./ w_ns
return sum(parameters[:one_over_rho]*log.(w_ns) .- 0.5*sum((random_variables[:L_njs] .- L_nj_star).^2, 3))
end
function calculate_derivative(random_variables, L_nj_star, parameters)
w_njs = random_variables[:w_njs]
L_njs = random_variables[:L_njs]
w_ns = sum(w_njs .* random_variables[:L_njs], 3)
wage_gap = w_njs ./ w_ns
gradient = parameters[:one_over_rho]*wage_gap .- (L_njs .- L_nj_star)
# ensure that steps sum to zero: we can only reallocate labor across sectors
return gradient .- mean(gradient, 3)
end
debug("-- BEGIN Adjustment loop")
random_variables[:L_njs] = L_nj_star
free_trade_labor_shares!(random_variables, parameters, t)
L_njs_free = random_variables[:L_njs_free]
k = 1
nulla = ones(1,1,1,1)*parameters[:numerical_zero]
utility = evaluate_utility(random_variables, L_nj_star, parameters, t)
gradient = calculate_derivative(random_variables, L_nj_star, parameters)
dist = mean(gradient .^ 2) .^ 0.5
info("Starting from $dist")
while (dist > parameters[:adjustment_tolerance]) && (k <= parameters[:max_iter_adjustment])
snapshot = copy(random_variables)
previous_utility = utility
previous_L = random_variables[:L_njs]
step_size = min.(0.33*max_step_size(previous_L, gradient), 0.1)
snapshot[:L_njs] = previous_L .+ gradient .* step_size
utility = evaluate_utility(snapshot, L_nj_star, parameters, t)
gradient = calculate_derivative(snapshot, L_nj_star, parameters)
dist = mean(gradient .^ 2) .^ 0.5
difference = utility - previous_utility
proportional_increase = difference / sum(gradient .^ 2 .* step_size)
debug("Difference: ", difference)
debug("Proportional increase: ", proportional_increase)
info("---- Adjustment $k: $dist")
k = k+1
random_variables = snapshot
end
debug("-- END Adjustment loop")
end
function expected_wage_share(random_variables)
w_njs = random_variables[:w_njs]
L_njs = random_variables[:L_njs]
wage_bill = w_njs .* L_njs
wage_share = wage_bill ./ sum(wage_bill, 3)
return expected_value(wage_share)
end
function outer_loop!(random_variables, parameters, t, L_nj_star)
N, J = parameters[:N], parameters[:J]
lambda = parameters[:outer_step_size]
random_variables[:L_njs] = copy(L_nj_star)
info("BEGIN Outer loop")
starting_values!(random_variables, parameters, t)
dist = 999
k = 1
while (dist > parameters[:outer_tolerance]) && (k <= parameters[:max_iter_outer])
old_wage_share = L_nj_star ./ sum(L_nj_star, 3)
adjustment_loop!(random_variables, L_nj_star, parameters, t)
wage_share = expected_wage_share(random_variables)
@test sum(wage_share, 3) ≈ ones(1,N,1,1) atol=1e-9
dist = share_distance(wage_share, old_wage_share)
info("-- Outer ", k, ": ", dist)
L_nj_star = (1-lambda)*old_wage_share .+ lambda*wage_share
k = k+1
end
info("END Outer loop")
return L_nj_star
end
function period_wrapper(parameters, t)
N, J = parameters[:N], parameters[:J]
info("--- Period ", t, " ---")
A_njs = parameters[:A_njs][t]
random_variables = Dict{Symbol, Any}()
random_variables[:A_njs] = A_njs
random_variables[:L_njs] = zeros(1,N,J,1)
for n=1:N
# start from expenditure labor weights
random_variables[:L_njs][1,n,:,1] = parameters[:importance_weight]
end
free_trade_labor_shares!(random_variables, parameters, t)
stv = random_variables[:L_njs_free]
L_nj_star = outer_loop!(random_variables, parameters, t, stv)
compute_trade_shares!(random_variables, parameters, t)
compute_real_gdp!(random_variables, parameters, t)
return random_variables
end
end