Releases: kozistr/pytorch_optimizer
Releases · kozistr/pytorch_optimizer
pytorch-optimizer v2.11.1
Change Log
Feature
- Implement Tiger optimizer (#192)
- Implement CAME optimizer (#196)
- Implement loss functions (#198)
- Tversky Loss : Tversky loss function for image segmentation using 3D fully convolutional deep networks
- Focal Tversky Loss
- Lovasz Hinge Loss : The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks
Diff
pytorch-optimizer v2.11.0
Change Log
Feature
- Implement PAdam optimizer (#186)
- Implement LOMO optimizer (#188)
- Implement loss functions (#189)
- BCELoss
- BCEFocalLoss
- FocalLoss : Focal Loss for Dense Object Detection
- FocalCosineLoss : Data-Efficient Deep Learning Method for Image Classification Using Data Augmentation, Focal Cosine Loss, and Ensemble
- DiceLoss : Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations
- LDAMLoss : Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss
- JaccardLoss
- BiTemperedLogisticLoss : Robust Bi-Tempered Logistic Loss Based on Bregman Divergences
Diff
pytorch-optimizer v2.10.1
pytorch-optimizer v2.10.0
Change Log
Feature
- Implement Amos optimizer (#174)
- Implement SignSGD optimizer (#176)
- Implement AdaHessian optimizer (#176)
- Implement SophiaH optimizer (#173, #176)
- Implement re-usable functions to compute hessian in
BaseOptimizer
(#176, #177)- two types of distribution are supported (
Gaussian
,Rademacher
).
- two types of distribution are supported (
- Support
AdamD
feature for AdaHessian optimizer (#177)
Diff
Contributions
thanks to @i404788
pytorch-optimizer v2.9.1
pytorch-optimizer v2.9.0
Change Log
Feature
- Implement AdaMax optimizer, #148
- A variant of Adam based on the infinity norm
- Implement Gravity optimizer, #151
- Implement AdaSmooth optimizer, #153
- Implement SRMM optimizer, #154
- Implement AvaGrad optimizer, #155
- Implement AdaShift optimizer, #157
- Upgrade to D-Adaptation v3, #158, #159
- Implement AdaDelta optimizer, #160
Docs
Refactor
- Refactor validation logic, #149, #150
- Rename
amsbound
,amsgrad
terms intoams_bound
, #149 - Return gradient instead of the parameter, AGC. #149
- Refactor duplicates (e.g. rectified step size, AMSBound, AdamD, AdaNorm, weight decay) into re-usable functions, #150
- Move
pytorch_optimizer.experimental
underpytorch_optimizer.*.experimental
Diff
pytorch-optimizer v2.8.0
Change Log
Feature
- Implement A2Grad optimizer, #136
- Implement Accelerated SGD optimizer, #137
- Implement Adaptive SGD optimizer, #139
- Implement SGDW optimizer, #139
- Implement Yogi optimizer, #140
- Implement SWATS optimizer, #141
- Implement Fromage optimizer, #142
- Implement MSVAG optimizer, #143
- Implement AdaMod optimizer, #144
- Implement AggMo optimizer, #145
- Implement QHAdam, QHM optimizers, #146
- Implement PID optimizer, #147
Bug
pytorch-optimizer v2.7.0
Change Log
Features
- Implement
AdaNorm
optimizer, #133 - Implement
RotoGrad
optimizer, #124, #134 - Implement
D-Adapt Adan
optimizer, #134 - Support
AdaNorm
variant, #133, #134- AdaBelief
- AdamP
- AdamS
- AdaPNM
- diffGrad
- Lamb
- RAdam
- Ranger
- Adan
- Support
AMSGrad
variant, #133, #134- diffGrad
- AdaFactor
- Support
degenerated_to_sgd
, #133- Ranger
- Lamb
Refactor
- Rename
adamd_debias_term
toadam_debias
, #133 - Merge the rectified version with the original, #133
- diffRGrad + diffGrad -> diffGrad
- RaLamb + Lamb -> Lamb
- now you can simply use with
rectify=True
Fix
- Fix
previous_grad
deepcopy issue in Adan optimizer. #134
pytorch-optimizer v2.6.1
pytorch-optimizer v2.6.0
Change Log
Feature
- Implement SM3 optimizer, #130
- Tweak Scalable Shampoo optimizer, #128, #129
- implement a new preconditioner type, OUTPUT.
- optimize speed/memory usage of coupled Newton iteration and power iteration methods.
- use in-place operation (SQRT-N Grafting).
- clean-up
shampoo_utils
more readable. - support
skip_preconditioning_rank_lt
parameter to skip preconditioning in case of the low-rank gradient. - set default value for
preconditioning_compute_steps
to 1000. - set default value for
start_preconditioning_step
to 25.