diff --git a/jsrbib/JSRbib.html b/jsrbib/JSRbib.html index 48bb761..23f683f 100644 --- a/jsrbib/JSRbib.html +++ b/jsrbib/JSRbib.html @@ -205,16 +205,20 @@
The proposed text is an attempt to provide a (constantly updated) list of publications on the convergence of infinite matrix products and the rate of their growth/decrease when the number of factors tends to infinity.
+Of course, the papers mentioned below mainly reflect my personal interests. I may miss some papers that other people consider “very important”, or I may not know some of them, and I may also include links to papers that are of interest only to me.
+The annotations to the works mentioned come from the abstracts of the publications themselves, and from the MathSciNet and zbMATH databases. Sometimes the annotations are slightly edited to combine all available sources.
+The works mentioned in this text cover the following topics.
In this section we have included publications dealing with one of the most discussed problems of the joint/generalized spectral radius theory, which has significantly influenced almost all aspects of this theory.
The number of papers in which the theory of convergence of infinite matrix products is applied to other problems has grown very rapidly in recent years. Therefore, I am forced to limit the relevant reference list to those publications which mainly reflect my personal interests.
@@ -327,11 +336,13 @@
This section contains publications in which the problem of convergence of infinite matrix products is considered as a special case of the general theory.
Joint/generalized spectral radius from the point of view of the general theory of matrix semigroups and the theory of Banach algebras.
This section describes some of the algorithms used to compute the joint/generalized spectral radius and related problems.
@@ -425,6 +442,7 @@
Some math tools that have proven useful when exploring joint/generalized spectral radius.
@@ -2994,6 +3018,7 @@
The problem of stability of linear dynamic systems with switchings is considered. It is known that an irreducible \(d\)-dimensional system always has an invariant Lyapunov norm (Barabanov norm), which determines the stability of the system and the order of growth of its trajectories. We prove that in the case of \(d=2\) the invariant norm is a piecewise analytic function and can be constructed explicitly for any system with a finite number of matrices. A construction method, an algorithm for calculating the Lyapunov exponent, and a method for determining the stability of the system are presented. A complete classification of invariant norms of planar systems is obtained. A criterion for the uniqueness of an invariant norm for a given system has been proven, and norms of a special type have been studied (norms generated by polygons, etc.).
+@@ -3001,872 +3026,1205 @@
Aazan, G. [450]
+Açıkmeşe, B. [448]
+Ahmadi, A. [189, 190, 243, 274, 275, 298, 328, 329, 361]
+Ait Rami, M. [276]
+Allen, J. [244]
+Al’pin, Yu. [225]
+ +Anantharam, V. [160]
+Ando, T. [85]
+Anthonisse, J. [11]
+Asarin, E. [26, 32, 42, 48, 362]
+Athanasopoulos, N. [382]
+ + +Babiarz, A. [363]
+Backes, L. [437]
+Bajovic, D. [299]
+ +Bapat, R. [86]
+Barabanov, N. [27–29, 53, 154, 168]
+ +Baudet, G. [13]
+Bauer, P. [271]
+ + +Bertsekas, D. [30]
+ +Bhatia, R. [55]
+Bhattacharyya, T. [55]
+ +Blondel, V. [71, 83, 84, 105–107, 121, 130, 138–140, 148, 156, 157, 175, 191, 192, 198–200, 213, 218, 224, 227, 246, 272, 301, 348]
+Bochi, J. [141, 226, 349, 350, 365, 412, 467]
+ + + +Bousch, T. [132]
+Branicky, M. [131]
+ +Breuillard, E. [438, 439, 453]
+Bröker, M. [108]
+Bru, R. [49]
+Brundu, M. [399]
+Bui, V. [454]
+Canterini, V. [138]
+Cao, Y. [409]
+Catalano, C. [400, 411, 422, 440]
+Censor, Y. [415]
+Cervelle, J. [362]
+Chang, C.-T. [246, 272, 278, 301]
+ + +Chazan, D. [6]
+Cheban, D. [149]
+Chen, Q. [109]
+Chenavier, C. [423]
+Cheng, Z. [380]
+ +Chitour, Y. [279, 308, 352, 441, 442, 455, 469]
+Cicone, A. [228, 247, 280, 335, 353, 401]
+Cohen, J. [15]
+Cohn, H. [31]
+Cong, S. [366]
+Conti, C. [158]
+Coons, M. [364]
+ +Cvetković, A. [456]
+Czornik, A. [159, 176, 181, 182, 193, 303, 313, 354, 363, 367]
+Dai, X. [194, 195, 248–256, 282, 283, 304–306, 331, 332, 355, 385]
+Daubechies, I. [38, 44, 45, 122]
+Daviaud, L. [386]
+Degorre, A. [362]
+Dekking, M. [257]
+Della Rossa, F. [413]
+Deng, L. [449]
+Dercole, F. [413]
+Dettmann, C. [424]
+ +Dima, C. [362]
+Dragičević, D. [437]
+ + +Dumas, P. [307]
+Elsner, L. [49, 56, 64, 70, 74, 120]
+Emel’yanov, E. [150]
+Epperlein, J. [470]
+Ercan, Z. [150]
+Essick, R. [375]
+Fayad, B. [196]
+Feng, D.-J. [425]
+Fomenko, I. [48]
+Fornasini, E. [284]
+Friedland, S. [74]
+ +Fujiwara, K. [438]
+Galkowski, K. [271]
+Garibaldi, E. [412]
+Gaubert, S. [57, 105, 387, 426]
+ +Gelfand, I. [1]
+Gessesse, H. [229]
+Gharavi, R. [160]
+Gil’, M. [414]
+Girard, A. [450]
+Gomes, J. [388]
+ +Greco, L. [450]
+Gripenberg, G. [65]
+Guglielmi, N. [126, 142, 161, 162, 183, 197, 214, 228, 285, 309, 333, 335, 356, 368, 369, 389, 401, 402, 427, 441, 471]
+Guillon, P. [386]
+Guinand, P. S. [17]
+Gursoy, B. [258]
+Gurvits, L. [58, 75, 163, 184]
+Hadwin, D. [39]
+Hajnal, J. [10]
+Hanna, Y. [286]
+ +Hartfiel, D. [133]
+He, Q. [435]
+Heaton, H. [415]
+Heil, C. [59]
+Hendrickx, J. [272, 344, 351, 384]
+Hetel, L. [423]
+Holtz, O. [111]
+Horn, F. [362]
+Howard, R. [76]
+Hsu, S.-Y. [260]
+ + +Huang, Y. [194, 195, 252–255, 262, 283, 305, 306, 332, 355, 385]
+Jachymski, J. [215]
+ +Javaheri, M. [311]
+Jenkinson, O. [390]
+ + +Jungers, R. [175, 198–200, 216–218, 224, 227, 230, 243, 263, 272, 274, 287, 298, 312, 323–325, 328, 329, 335, 342, 344, 345, 348, 351, 358–361, 372, 374, 375, 382, 384, 391, 400, 411, 422, 424, 430, 440, 447]
+Jurgaś, P. [176, 182, 193, 367]
+Karow, M. [192]
+Kaszkurewicz, E. [81, 95, 112]
+Khan, U. [396]
+King, C. [188]
+ + + +Koiran, P. [121]
+Kozyakin, V. [18–22, 26, 32–36, 40–42, 46, 50, 66, 81, 87, 88, 95, 143, 144, 151, 164, 165, 185, 219, 220, 231–235, 256, 264, 281, 302, 314, 336, 337, 362, 370, 371, 392, 393, 403, 416, 429, 458]
+Krasnosel’skii, M. [18–22, 26, 32, 42]
+Krikorian, R. [196]
+Kuijvenhoven, B. [257]
+Kuznetsov, N. [18–22, 26, 32, 42, 50, 87, 88]
+Lagarias, J. [38, 44, 45, 122]
+Laglia, L. [389]
+Laskawiec, P. [467]
+Lau, K.-S. [127]
+ +Leizarowitz, A. [47]
+Li, K. [265]
+ +Liao, G. [409]
+Lima, R. [51]
+ +Livshits, L. [89]
+Lo, C.-H. [425]
+Longstaff, W. [61]
+Lubachevsky, B. [24]
+Luís, R. [338]
+Luo, J. [262]
+Luo, Y. [385]
+Lur, Y.-Y. [166, 177, 178, 221]
+MacDonald, G. [89]
+Maesumi, M. [62, 67, 90, 113, 114, 167, 202]
+Maggio, M. [446]
+Magron, V. [446]
+Mairesse, J. [132]
+Mammana, C. [149]
+Mandel, A. [12]
+ + +Mason, O. [184, 188, 258, 276, 339, 402]
+Mason, P. [279, 308, 352, 391, 424, 450, 455]
+ +Mathes, B. [89]
+ +Mejstrik, T. [417, 431, 459, 472, 473]
+Merlet, G. [386]
+ +Miranker, W. [6]
+Mitra, D. [24]
+Mohammadpour, R. [460]
+ +Mojškerc, B. [340]
+ +Monmarché, P. [469]
+Monovich, T. [266]
+Morris, I. [236, 237, 259, 267, 289, 290, 310, 316, 317, 350, 373, 394, 404, 418, 461, 462, 466, 474–476]
+Mößner, B. [238]
+Moura, J. [299]
+ +Musaeva, A. M. [477]
+Nawrat, A. [181]
+Nesterov, Yu. [139, 148, 156, 157, 213, 319, 432]
+ +Niezabitowski, M. [303, 313, 354, 367]
+Nordgren, E. [39]
+ +Ogura, M. [320–322, 342, 343, 374]
+Oliveira, H. [338]
+Olivier, É. [222]
+Olshevsky, A. [348]
+Omladič, M. [78]
+Opojtsev, V. [123]
+Oregón-Reyes, E. [406, 407, 433]
+ + + +Panti, G. [443]
+Papadimitriou, C. [121]
+Parrilo, P. [187, 190, 203, 243, 274, 275, 329, 372, 410, 421, 430]
+Parsaee, G. [300]
+Pascoe, J. E. [444]
+Peperko, A. [204, 268, 269, 291, 318, 405, 452]
+ + +Pokrovskii, A. [26, 46, 48, 50, 66, 87, 235, 281]
+Pokrovskiy, A. [281]
+Pollicott, M. [390]
+Popov, A. [229]
+Preciado, V. [374]
+Protasov, V. [68, 79, 93, 115, 169, 170, 175, 192, 199, 200, 206, 216, 218, 224, 230, 239, 263, 270, 280, 292, 309, 319, 323–325, 360, 368, 369, 376, 377, 389, 395, 401, 419, 432, 441, 456, 463, 464, 471, 472]
+Przedwojski, M. [271]
+Radjabalipour, M. [39]
+Radjavi, H. [37, 39, 61, 78, 89, 116, 229]
+Ragheb, S. [286]
+Rahibe, M. [51]
+Rams, M. [365]
+ + +Robert, F. [7]
+Roblin, T. [212]
+ +Rogers, E. [271]
+ +Roozbehani, M. [243, 274, 329]
+ + +Rubinov, A. [129]
+Safavi, S. [396]
+Samorodnitsky, A. [163]
+Saouter, Y. [69]
+Sauer, T. [158]
+ +Sclosa, D. [443]
+Seeger, B. [244]
+Seneta, E. [179]
+Serra-Capizzano, S. [228]
+ +Seyalioglu, H. [240]
+Shang, Y. [398]
+Sheĭpak, I. [94]
+ +Shen, S. [425]
+Shih, M.-H. [80, 85, 102, 103, 134, 201, 207, 260]
+ +Shulman, V. [116, 118, 119, 135, 208, 294, 297, 428, 457]
+ + +Sigalotti, M. [279, 441, 442, 455, 469]
+Simon, I. [12]
+Sinopoli, B. [299]
+Smpoukis, K. [382]
+Sołtysiak, A. [63]
+Song, Y. [449]
+Spinu, E. [229]
+Spiteri, P. [125]
+Spitkovsky, I. [240]
+Stanford, D. [52]
+ + + +Sun, Z. [209]
+Szép, G. [25]
+ +Tcaciuc, A. [229]
+Teichner, R. [295]
+Theys, J. [130, 140, 148, 157, 171, 259]
+Thomas, A. [222, 223, 241, 326, 408, 465]
+Tijms, H. [11]
+Toker, O. [82]
+ +Trenn, S. [296]
+Troitsky, V. [229]
+Tsitsiklis, J. [30, 71, 83, 84, 105–107, 121]
+Tuna, E. [210]
+Turovskii, Yu. [104, 118, 119, 135, 208, 294, 297, 428, 457]
+Unger, D. [244]
+Urbano, J. [52]
+Ushirobira, R. [423]
+Vagnoni, C. [211]
+Valcher, M. [284]
+ + + + +Vladimirov, A. [88, 120, 129, 130, 140, 379]
+Vlassis, N. [345]
+ +Wang, G. [385]
+Wang, J. [446]
+Wang, S. [327]
+Wang, X. [380]
+ + +Wang, Z. [447]
+Webb, B. [434]
+Wen, J. [327]
+Wirth, F. [97, 98, 136, 137, 147, 152, 161, 168, 172–174, 188, 192, 205, 276, 296, 339, 402, 470]
+Wolfowitz, J. [5]
+Wu, J.-W. [80]
+Wu, Z. [435]
+Wulff, K. [188]
+Xavier, J. [299]
+Xiao, M. [194, 195, 252–255, 262, 273, 283, 288, 305, 306, 315, 355, 385]
+ + +Yang, W.-W. [221]
+ +Zennaro, M. [126, 142, 161, 162, 183, 197, 214, 228, 285, 333, 356, 399, 427]
+Zhang, H. [449]
+Zhang, W. [261]
+Zhang, Y. [436]
+Zhou, D.-X. [127]
+ +Zou, R. [409]
My problem was to make a HTML file with plenty of mathematics from a LaTeX one. As a beginner, I immediately faced the following problems:
After a while I discovered that the most suitable way for me is to join Tex4ht with MathJax. And the simplest way was to run the following command to process test.tex
file:
make4ht -s test.tex "myconfig" " -cunihtf -utf8"+
and after that, if one wants to embed into resulted test.html
the css-file test.css
generated during previous command, one should issue one the following command
htlatex test.tex "myconfig" " -cunihtf -utf8"+
or once more
make4ht -s test.tex "myconfig" " -cunihtf -utf8"+
where the config file myconfig.cfg
is as follows
@@ -266,18 +271,23 @@1 +
+
2 How to reference equations in TeX4ht+MathJax
+Unfortunately, it turned out that reference in conjunction TeX4ht+MathJax works well when they referenced sections, subsections and other structure element that are in text mode, but when you are trying to reference the label of equation you are getting ???.
+The problem is turned out to be rather easily solvable: to reference labels of equations, align or other things in math mode you should put the calling
+\eqref
or\ref
in a math environment, e.g. by surrounding them by$’s
or\(
…\)
. Another way is to redefine the command\eqref
in order that it will be invoked in math mode automatically (see the appropriate string in the config filemyconfig.cfg
.So, for the LaTeX code below
@@ -298,23 +308,31 @@+
we obtain the following output:
+\begin {equation} \boldsymbol {f}(x)=1\label {eq} \end {equation}
+\[ 1\neq 1. \tag {OneIsNotOne Condition}\label {E:mycond} \]
+Here, the reference to
+\tag{OneIsNotOne Condition}
in previous equation is as follows: \(\mathrm {(\ref {E:mycond})}\)\begin {align} a & =1\label {A} \\ b & =0\label {B} \end {align}
+Example of references: we have equation \(\mathrm {(\ref {eq})}\) from Sec. 1. Or \(\ref {A}\)-\(\mathrm {(\ref {B})}\).
+
3 How to cope with TikZ figures
+Tex4th supports TikZ, however, for correct displaying text and math symbols in TikZ picture, it is needed to put in the preamble of tex file the following lines, before TikZ package loading:
@@ -322,13 +340,16 @@+
Below is an example of using TikZ.