-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgetDistrSamplers.R
116 lines (82 loc) · 3.07 KB
/
getDistrSamplers.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
library(moments)
getGammaSamples = function(observationsVector, numSamples) {
s = log(1/(length(observationsVector)) * sum(observationsVector)) - 1/length(observationsVector) * sum(log(observationsVector))
k = (3 - s + sqrt((s-3)^2 + 24*s))/(12*s)
theta = 1/(k*length(observationsVector)) * sum(observationsVector)
# Could improve params iteratively
samples = rgamma(numSamples, shape=k, scale=theta)
return(samples)
}
getGammaSamplesMomentMatching = function(observationsVector, numSamples) {
skew = skewness(observationsVector)
k.mm = 4/(skew^2)
variance = var(observationsVector)
theta.mm = sqrt(variance/k.mm)
mu = mean(observationsVector)
shift = mu - k.mm*theta.mm
samples = rgamma(numSamples, shape=k.mm, scale=theta.mm) + shift
return(samples)
}
getNormalSamples = function(observationsVector, numSamples) {
mu = mean(observationsVector)
variance = var(observationsVector)
samples = rnorm(numSamples, mean=mu, sd=sqrt(variance))
return(samples)
}
getLogNormalSamples = function(observationsVector, numSamples) {
n = length(observationsVector)
mu.hat = 0
var.hat = 0
for (i in 1:n) {
mu.hat = mu.hat + log(observationsVector[i]) }
mu.hat = mu.hat/n
for (i in 1:n) {
var.hat = var.hat + (log(observationsVector[i]) - mu.hat)^2
}
var.hat = var.hat/n
samples = rlnorm(numSamples, meanlog=mu.hat, sdlog=sqrt(var.hat))
return(samples)
}
getEMSamples = function(observationsVector, numSamples, k) {
emRun = getEMRandomInit(observationsVector, k)
mixComponents = matrix(nrow=numSamples, ncol=1)
samples = matrix(nrow=numSamples, ncol=1)
for(i in 1:numSamples) {
mixComponents[i] = sample(x=seq(from=1, by=1, to=k), size=1, prob=emRun$pro)
componentMean = emRun$parameters$mean[, mixComponents[i]]
componentVariance = emRun$parameters$variance$Sigma
irisSamples[i,] = mvrnorm(n=1, mu=componentMean, Sigma=componentVariance)
}
}
getEMRandomInit = function(observationsVector, k) {
library(mclust)
rdmInitVtr = matrix(nrow=length(observationsVector), ncol=1)
for(i in 1:nrow(rdmInitVtr)) {
rdmInitVtr[i] = sample(x=seq(from=1, by=1, to=k), size=1, prob=rep(1/k, k))
}
rdmInitMtx = unmap(rdmInitVtr)
# Hacky way to get em to work on vtr
#observationsMtx = matrix(data=c(observationsVector, observationsVector), nrow=length(observationsVector), ncol=2)
msEst.rdmInit = mstep(modelName="EEE", data=as.numeric(observationsVector), z=rdmInitMtx)
emRun.rdmInit = em(modelName=msEst.rdmInit$modelName, data=observationsVector, parameters=msEst.rdmInit$parameters)
#msEst.rdmInit = mstep(modelName="EEE", data=observationsMtx, z=rdmInitMtx)
#emRun.rdmInit = em(modelName=msEst.rdmInit$modelName, data=observationsMtx, parameters=msEst.rdmInit$parameters)
return(emRun.rdmInit)
}
# testing
#emRun = getEMRandomInit(op3$latency_ms, 3)
#observationsVector=op3$latency_ms
#k=3
#str(observationsVector)
#class(observationsVector)
#str(op3$latency_ms)
#length(op3$latency_ms)
#is.vector(op3$latency_ms)
#class(op3$latency_ms)
#dim(rdmInitMtx)
#str(rdmInitMtx)
#class(rdmInitMtx)
#a = vector(mode="numeric", length=5)
#a=c(1,2,3,4,5)
#is.vector(a)
#class(a)