-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuserByEmail-experiment-2.R
259 lines (168 loc) · 11.1 KB
/
userByEmail-experiment-2.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# 3.9.10
# Goal: predict userByEmail's 99th percentile latency using op models from thoughtstream & thoughtsByHashTag
# Note: userByEmail has ops 2, 3, & 6
queryType="userByEmail"
numSampleSets=10
latencyQuantile=0.99
source("/work/ksauer/scads/experiments/client/performance/logparsing/src/main/R/experiment-functions.R")
# Setting up paths
basePathThoughtstream = "/work/ksauer/2.12.10-thoughtstream-experiment"
basePathThoughtsByHashTag = "/work/ksauer/3.8.10-thoughtsByHashTag-experiment"
basePathUserByEmail = "/work/ksauer/2.23.10-userByEmail-experiment"
basePath = "/work/ksauer/3.9.10-userByEmail-experiment-2"
outputPath1 = paste(basePath, "/option1", sep="")
outputPath2 = paste(basePath, "/option2", sep="")
# Training phase: get histograms
createAndSaveUserByEmailOpHistogramsFromOtherQueries(basePathThoughtstream, basePathThoughtsByHashTag, outputPath1, outputPath2)
# Validation phase:
# Uses validation data from userByEmail experiment
## Version 1:
# h2=h2.thoughtsByHashTag, h3=h3.thoughtstream, h6=h6.thoughtstream
print("Getting predicted latency...")
getPredictedQueryLatencyQuantiles2(queryType, numSampleSets, basePathUserByEmail, outputPath1, latencyQuantile)
getPredictionError2(basePathUserByEmail, outputPath1)
latencyQuantiles=c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99)
getPredictedQueryLatencyMultipleQuantiles(queryType, numSampleSets, basePathUserByEmail, outputPath1, latencyQuantiles)
startingThread=51
endingThread=100
numValidationRuns=10
getMultipleValidationLatencyQuantiles(startingThread, endingThread, basePathUserByEmail, numValidationRuns, latencyQuantiles)
plotPredictionErrorMultipleQuantiles(basePathUserByEmail, outputPath1, "userByEmail", latencyQuantiles)
load(file="~/Desktop/actualAndPredictedQuantiles.RData")
latencyQuantiles=c(0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99)
plot(latencyQuantiles, actualMedians, ylim=c(0,max(actualMedians, predictedMedians)), col=0)
lines(latencyQuantiles, actualMedians, lw=2, col="red")
lines(latencyQuantiles, predictedMedians, lw=2, col="blue")
legend("topleft", legend=c("actual", "predicted"), col=c("red", "blue"), lwd=2)
plot(latencyQuantiles, actualMedians)
## Version 2:
# h2=h2.thoughtsByHashTag, h3=h3.thoughtstream, h6=h6.thoughtsByHashTag
print("Getting predicted latency...")
getPredictedQueryLatencyQuantiles2(queryType, numSampleSets, basePathUserByEmail, outputPath2, latencyQuantile)
getPredictionError2(basePathUserByEmail, outputPath2)
## 3.30.10
## Follow-up: Look into why it didn't work.
# Version 1:
basePath = "/work/ksauer/3.9.10-userByEmail-experiment-2/option1/3.30.10-debugging"
sampledDataPath = "/work/ksauer/3.9.10-userByEmail-experiment-2/option1"
validationDataPath = "/work/ksauer/2.23.10-userByEmail-experiment"
# Examine actual data
startingThread = 51
endingThread = 100
logPath = "/work/ksauer/2.23.10-userByEmail-experiment/validation-logs/validation1-logs"
source("/work/ksauer/scads/experiments/client/performance/logparsing/src/main/R/experiment-functions.R")
data = getSingleDataset(startingThread, endingThread, logPath)
save(data, file=paste(basePath, "/validationDataset1.RData", sep=""))
dim(data)
length(which(data$opLevel==3))
colnames(data)
pdf(file=paste(basePath, "/validation1-hist.pdf", sep=""), width=5, height=5)
hist(data$latency_ms[data$opLevel==3], breaks=25, xlab="Latency (ms)", main="userByEmail: Validation Run 1")
abline(v=median(data$latency_ms[data$opLevel==3]), col="red", lw=2)
legend("topright", legend=c(paste("median = ", round(median(data$latency_ms[data$opLevel==3]), digits=2), "ms", sep="")), lwd=2, col="red")
dev.off()
# Plot sample set 1
load(file=paste(sampledDataPath, "/sample1.RData", sep="")) # => samples
dim(samples)
pdf(file=paste(basePath, "/sample1-hist.pdf", sep=""), width=5, height=5)
hist(samples, breaks=25, xlab="Latency (ms)", main="userByEmail: Sample Set 1")
abline(v=median(samples), col="red", lw=2)
legend("topright", legend=c(paste("median = ", round(median(samples), digits=2), "ms", sep="")), lwd=2, col="red")
dev.off()
# Bin actual queries by variance
medianValidationLatency = median(data$latency_ms[data$opLevel==3])
targetBinVariance = 0.01*medianValidationLatency
validationMedianBin = data[which(data$opLevel==3 & abs(medianValidationLatency - data$latency_ms) < targetBinVariance),]
dim(validationMedianBin)
range(validationMedianBin$latency_ms)
validationMedianBin[1:10,]
# => (threadNum, queryNum) id of each query whose latency falls within this range.
data[data$threadNum==51 & data$queryNum==12 & data$opLevel==2,]
# Next, get its ops and add those rows to another array.
currentThreadNum = validationMedianBin[1,"threadNum"]
currentQueryNum = validationMedianBin[1,"queryNum"]
print(1)
validationMedianBinOps = data[data$threadNum==currentThreadNum & data$queryNum==currentQueryNum & data$opLevel==2,]
for (i in 2:nrow(validationMedianBin)) {
print(i)
currentThreadNum = validationMedianBin[i,"threadNum"]
currentQueryNum = validationMedianBin[i,"queryNum"]
binOps = data[data$threadNum==currentThreadNum & data$queryNum==currentQueryNum & data$opLevel==2,]
validationMedianBinOps = rbind(validationMedianBinOps, binOps)
}
dim(validationMedianBinOps)
validationMedianBinOps[1:10,]
# Next, look at each op's histogram
# Op 2
pdf(file=paste(basePath, "/opType2-hist.pdf", sep=""), width=5, height=5)
histData = validationMedianBinOps$latency_ms[validationMedianBinOps$opType==2]
hist(histData, breaks=25, xlab="Latency (ms)", main="opType2 (userByEmail): Validation Run 1")
medianVal = median(histData)
abline(v=medianVal, col="red", lw=2)
legend("topright", legend=c(paste("median = ", round(medianVal, digits=2), "ms", sep="")), lwd=2, col="red")
dev.off()
histWithMedianToPdf(validationMedianBinOps$latency_ms[validationMedianBinOps$opType==2], filename=paste(basePath, "/opType2-hist.pdf", sep=""), breaks=25, xlab="Latency (ms)", main="opType2", col="blue", legendLocation="topright")
# Op 3
pdf(file=paste(basePath, "/opType3-hist.pdf", sep=""), width=5, height=5)
histData = validationMedianBinOps$latency_ms[validationMedianBinOps$opType==3]
hist(histData, breaks=25, xlab="Latency (ms)", main="opType3 (userByEmail): Validation Run 1")
medianVal = median(histData)
abline(v=medianVal, col="red", lw=2)
legend("topright", legend=c(paste("median = ", round(medianVal, digits=2), "ms", sep="")), lwd=2, col="red")
dev.off()
# Op 6
pdf(file=paste(basePath, "/opType6-hist.pdf", sep=""), width=5, height=5)
histData = validationMedianBinOps$latency_ms[validationMedianBinOps$opType==6]
hist(histData, breaks=25, xlab="Latency (ms)", main="opType6 (userByEmail): Validation Run 1")
medianVal = median(histData)
abline(v=medianVal, col="red", lw=2)
legend("topright", legend=c(paste("median = ", round(medianVal, digits=2), "ms", sep="")), lwd=2, col="red")
dev.off()
# Repeat for 2% and 10% variance => bin (plug above into a function)
# Debugging function
opsWithin1PercentBinAroundMedian = binActualDataByDifferenceFromQuantileLatency(data, 0.5, 1)
quantileLatency=0.5
percentDifferenceFromQuantileLatency=1
# Sampling should be extended; in addition to tracking the sampled query latency, also record the sampled op latencies.
load(file=paste(validationDataPath, "/validationStats.RData", sep="")) # => validationStats
numSamplesPerSet = floor(mean(validationStats[,"numQueries"]))
print(paste("Using", numSamplesPerSet, "samples per set."))
userByEmailQueryAndOpSampler(sampledDataPath, 1, numSamplesPerSet)
load(file=paste(sampledDataPath,"/sample", 1,"-queriesAndOps.RData",sep="")) # => samples, opSamples
# Bin
sampledOpsWithin1PercentBinAroundMedian = binSamplesByDifferenceFromQuantileLatency(samples, opSamples, 0.5, 1)
# debugging function
querySamples=samples
quantileLatency=0.5
percentDifferenceFromQuantileLatency=1
histWithMedianToPdf(sampledOpsWithin1PercentBinAroundMedian[,"op2"], filename=paste(basePath, "/opType2-sampled-1percent-bin-hist.pdf", sep=""), breaks=25, xlab="Latency (ms)", main="opType2 - Sampled - 1% bin", col="green", legendLocation="topright")
histWithMedianToPdf(sampledOpsWithin1PercentBinAroundMedian[,"op3"], filename=paste(basePath, "/opType3-sampled-1percent-bin-hist.pdf", sep=""), breaks=25, xlab="Latency (ms)", main="opType3 - Sampled - 1% bin", col="green", legendLocation="topright")
histWithMedianToPdf(sampledOpsWithin1PercentBinAroundMedian[,"op6"], filename=paste(basePath, "/opType6-sampled-1percent-bin-hist.pdf", sep=""), breaks=25, xlab="Latency (ms)", main="opType6 - Sampled - 1% bin", col="green", legendLocation="topright")
# Also look at hists of ops for all queries in the sample
histWithMedianToPdf(opSamples[,"op2"], filename=paste(basePath,"/opType2-allsamples-hist.pdf", sep=""), breaks=25, xlab="Latency (ms)", main="opType2 - Sampled", col="green", legendLocation="topright")
histWithMedianToPdf(opSamples[,"op3"], filename=paste(basePath,"/opType3-allsamples-hist.pdf", sep=""), breaks=25, xlab="Latency (ms)", main="opType3 - Sampled", col="green", legendLocation="topright")
histWithMedianToPdf(opSamples[,"op6"], filename=paste(basePath,"/opType6-allsamples-hist.pdf", sep=""), breaks=25, xlab="Latency (ms)", main="opType6 - Sampled", col="green", legendLocation="topright")
## More detail, per-op
opType=6
opString = paste("op",opType,sep="")
xmax = max(c(data$latency_ms[data$opLevel==2 & data$opType==opType], opsWithin1PercentBinAroundMedian$latency_ms[opsWithin1PercentBinAroundMedian$opType==opType], opSamples[,opString], sampledOpsWithin1PercentBinAroundMedian[,opString]))
pdf(file=paste(basePath, "/", opString, "-hists.pdf", sep=""), height=10, width=10)
par(mar=c(5,5,4,2)+0.1)
par(mfrow=c(2,2))
hist(data$latency_ms[data$opLevel==2 & data$opType==opType], xlab="Latency (ms)", main=paste(opString, ", all queries in validation run", sep=""), xlim=c(0,xmax))
medianLatency = median(data$latency_ms[data$opLevel==2 & data$opType==opType])
abline(v=medianLatency, col="red", lw=2)
legend("topright", legend=paste("median = ", round(medianLatency, digits=0), " ms", sep=""), col="red", lwd=2)
hist(opsWithin1PercentBinAroundMedian$latency_ms[opsWithin1PercentBinAroundMedian$opType==opType], xlab="Latency (ms)", main=paste(opString, ", from queries within 1% bin around median", sep=""), xlim=c(0,xmax))
medianLatency = median(opsWithin1PercentBinAroundMedian$latency_ms[opsWithin1PercentBinAroundMedian$opType==opType])
abline(v=medianLatency, col="red", lw=2)
legend("topright", legend=paste("median = ", round(medianLatency, digits=0), " ms", sep=""), col="red", lwd=2)
hist(opSamples[,opString], xlab="Latency (ms)", main=paste(opString,", all samples in sample set",sep=""), xlim=c(0,xmax))
medianLatency = median(opSamples[,opString])
abline(v=medianLatency, col="blue", lw=2)
legend("topright", legend=paste("median = ", round(medianLatency, digits=0), " ms", sep=""), col="blue", lwd=2)
hist(sampledOpsWithin1PercentBinAroundMedian[,opString], xlab="Latency (ms)", main=paste(opString, ", from samples within 1% bin around median", sep=""), xlim=c(0,xmax))
medianLatency=median(sampledOpsWithin1PercentBinAroundMedian[,opString])
abline(v=medianLatency, col="blue", lw=2)
legend("topright", legend=paste("median = ", round(medianLatency, digits=0), " ms", sep=""), col="blue", lwd=2)
dev.off()