-
Notifications
You must be signed in to change notification settings - Fork 3
/
model.py
182 lines (129 loc) · 5.52 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import csv
import sys
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report,confusion_matrix, accuracy_score
TEST_SIZE = 0.4
def main():
# Checking for the command-line arguments
if len(sys.argv) != 2:
sys.exit("Usage: python shopping.py data")
# Loading complete data from spreadsheet file and
# splitting it into training and testing sets
evidence, labels = load_data(sys.argv[1])
X_train, X_test, y_train, y_test = train_test_split(
evidence, labels, test_size=TEST_SIZE
)
# Training the knn model and making predictions
model = train_model(X_train, y_train)
predictions = model.predict(X_test)
sensitivity, specificity = evaluate(y_test, predictions)
# Displaying the results
print(f"Correct: {(y_test == predictions).sum()}")
print(f"Incorrect: {(y_test != predictions).sum()}")
print(f"True Positive Rate: {100 * sensitivity:.2f}%")
print(f"True Negative Rate: {100 * specificity:.2f}%")
# Displaying the classification report for model evaluation
print("\nClassification Report\n")
print(classification_report(y_test,predictions))
print("Accuracy : ",accuracy_score(y_test,predictions)*100)
def load_data(filename):
"""
Load shopping data from a CSV file `filename` and convert into a list of
evidence lists and a list of labels. Return a tuple (evidence, labels).
evidence should be a list of lists, where each list contains the
following values, in order:
- Administrative, an integer
- Administrative_Duration, a floating point number
- Informational, an integer
- Informational_Duration, a floating point number
- ProductRelated, an integer
- ProductRelated_Duration, a floating point number
- BounceRates, a floating point number
- ExitRates, a floating point number
- PageValues, a floating point number
- SpecialDay, a floating point number
- Month, an index from 0 (January) to 11 (December)
- OperatingSystems, an integer
- Browser, an integer
- Region, an integer
- TrafficType, an integer
- VisitorType, an integer 0 (not returning) or 1 (returning)
- Weekend, an integer 0 (if false) or 1 (if true)
labels should be the corresponding list of labels, where each label
is 1 if Revenue is true, and 0 otherwise.
"""
evidence = []
labels = []
month_index = dict(Jan=0, Feb=1, Mar=2, Apr=3, May=4, June=5,
Jul=6, Aug=7, Sep=8, Oct=9, Nov=10, Dec=11)
with open(filename) as f:
reader = csv.DictReader(f)
for row in reader:
evidence.append([
int(row["Administrative"]),
float(row["Administrative_Duration"]),
int(row["Informational"]),
float(row["Informational_Duration"]),
int(row["ProductRelated"]),
float(row["ProductRelated_Duration"]),
float(row["BounceRates"]),
float(row["ExitRates"]),
float(row["PageValues"]),
float(row["SpecialDay"]),
month_index[row["Month"]],
int(row["OperatingSystems"]),
int(row["Browser"]),
int(row["Region"]),
int(row["TrafficType"]),
1 if row["VisitorType"] == "Returning_Visitor" else 0,
1 if row["Weekend"] == "TRUE" else 0,
])
labels.append(1 if row["Revenue"] == "TRUE" else 0)
return evidence, labels
def train_model(evidence, labels):
"""
Given a list of evidence lists and a list of labels, return a
fitted k-nearest neighbor model (k=1) trained on the data.
"""
# As we are planning to classify customers on the basis whether they will complete
# the purchase or not, we start by defining
# Creating an instance of knn classifier model
model = KNeighborsClassifier(n_neighbors=1)
# Training the model based on labeled data
model.fit(evidence, labels)
return model
def evaluate(labels, predictions):
"""
Given a list of actual labels and a list of predicted labels,
return a tuple (sensitivity, specificty).
Assume each label is either a 1 (positive) or 0 (negative).
`sensitivity` should be a floating-point value from 0 to 1
representing the "true positive rate": the proportion of
actual positive labels that were accurately identified.
`specificity` should be a floating-point value from 0 to 1
representing the "true negative rate": the proportion of
actual negative labels that were accurately identified.
"""
t_positive = float(0)
t_negative = float(0)
sensitivity = float(0)
specificity = float(0)
for label, prediction in zip(labels, predictions):
if label == 0:
t_negative += 1
if label == prediction:
specificity += 1
if label == 1:
t_positive += 1
if label == prediction:
sensitivity += 1
# sensitivity: represent the "true positive rate": the proportion of
# actual positive labels that were accurately identified
sensitivity /= t_positive
# specificity: represent the "true negative rate": the proportion of
# actual negative labels that were accurately identified.
specificity /= t_negative
return sensitivity, specificity
if __name__ == "__main__":
main()