-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_generation.py
129 lines (105 loc) · 3.2 KB
/
data_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import uuid
import numpy as np
import argparse
import json
from pathlib import Path
# Training settings
parser = argparse.ArgumentParser(description="First binarized DoA estimation example")
parser.add_argument(
"--data-size",
type=int,
default=1000000,
metavar="N",
help="data size in samples (default: 1e6)",
)
parser.add_argument(
"--sources",
type=int,
default=1,
metavar="N",
help="Number of sources (default: 1)",
)
parser.add_argument(
"--realizations",
type=int,
default=1,
metavar="N",
help="Number of realizations (default: 1)",
)
parser.add_argument(
"--array-elements",
type=int,
default=1024,
metavar="N",
help="Array elements (default: 1024)",
)
parser.add_argument(
"--snr",
type=int,
default=1000,
metavar="N",
help="Signal to noise ratio (default: 1000)",
)
parser.add_argument(
"--angular-bins",
type=int,
default=90,
metavar="N",
help="Angular bins (default: 90)",
)
def array_response_vector(array, theta):
N = array.shape
v = np.exp(1j * 2 * np.pi * array * np.sin(theta))
return v / np.sqrt(N)
def generate_single_data(L, N, snr, numrealization):
array = np.linspace(0, (N - 1) / 2, N)
Thetas = np.pi * (np.random.rand(L) - 1 / 2) # random source directions
Alphas = np.random.randn(L) + np.random.randn(L) * 1j # random source powers
Alphas = np.sqrt(1 / 2) * Alphas
H = np.zeros((N, numrealization)) + 1j * np.zeros((N, numrealization))
for iter in range(numrealization):
htmp = np.zeros(N)
for i in range(L):
pha = np.exp(1j * 2 * np.pi * np.random.rand(1))
htmp = htmp + pha * Alphas[i] * array_response_vector(array, Thetas[i])
wgn = np.sqrt(0.5 / snr) * (np.random.randn(N) + np.random.randn(N) * 1j)
H[:, iter] = htmp + wgn
return Thetas, H
def generate_all_data(L, N, snr, numrealization, angular_bins, datapoints, path):
bins = angular_bins
Hout = np.zeros((datapoints, 2 * N * numrealization), dtype=np.float16)
Thetaout = np.zeros((datapoints), dtype=np.int16)
for i in range(datapoints):
Thetas, H = generate_single_data(L, N, snr, numrealization)
# dThetas = np.zeros((bins), dtype=np.int8)
idx = np.floor(((Thetas + np.pi / 2) / np.pi) * (bins)).astype(np.int16)
# dThetas[idx] = 1
flatH = H.flatten().T
binH = np.column_stack((flatH.real, flatH.imag)).flatten().astype(np.float16)
Hout[i] = binH
Thetaout[i] = idx # dThetas
with open(f"{path}/signal.npy", "wb") as signal, open(
f"{path}/label.npy", "wb"
) as label:
np.save(signal, Hout)
np.save(label, Thetaout)
def main():
args = parser.parse_args()
name = uuid.uuid4().hex
Path("data").mkdir(parents=True, exist_ok=True)
path = f"data/{name}"
os.mkdir(path)
with open(f"{path}/arguments.json", "w") as args_json:
json.dump(args.__dict__, args_json, indent=2)
generate_all_data(
args.sources,
args.array_elements,
args.snr,
args.realizations,
args.angular_bins,
args.data_size,
path,
)
if __name__ == "__main__":
main()