forked from vurtun/lib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sched.h
1053 lines (925 loc) · 34.7 KB
/
sched.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
sched.h - zlib - Doug Binks, Micha Mettke
ABOUT:
This is a permissively licensed ANSI C Task Scheduler for
creating parallel programs. Note - this is a pure ANSI C single header
conversion of Doug Binks enkiTS library (https://github.com/dougbinks/enkiTS).
Project Goals
- ANSI C: Designed to be easy to embed into other languages
- Embeddable: Designed as a single header library to be easy to embed into your code.
- Lightweight: Designed to be lean so you can use it anywhere easily, and understand it.
- Fast, then scalable: Designed for consumer devices first, so performance on a low number of threads is important, followed by scalability.
- Braided parallelism: Can issue tasks from another task as well as from the thread which created the Task System.
- Up-front Allocation friendly: Designed for zero allocations during scheduling.
DEFINE:
SCHED_IMPLEMENTATION
Generates the implementation of the library into the included file.
If not provided the library is in header only mode and can be included
in other headers or source files without problems. But only ONE file
should hold the implementation.
SCHED_STATIC
The generated implementation will stay private inside the implementation
file and all internal symbols and functions will only be visible inside
that file.
SCHED_ASSERT
SCHED_USE_ASSERT
If you define SCHED_USE_ASSERT without defining ASSERT sched.h
will use assert.h and assert(). Otherwise it will use your assert
method. If you do not define SCHED_USE_ASSERT no additional checks
will be added. This is the only C standard library function used
by sched.
SCHED_MEMSET
You can define this to 'memset' or your own memset replacement.
If not, sched.h uses a naive (maybe inefficent) implementation.
SCHED_INT32
SCHED_UINT32
SCHED_UINT_PTR
If your compiler is C99 you do not need to define this.
Otherwise, sched will try default assignments for them
and validate them at compile time. If they are incorrect, you will
get compile errors and will need to define them yourself.
SCHED_SPIN_COUNT_MAX
You can change this to set the maximum number of spins for worker
threads to stop looking for work and go into a sleeping state.
SCHED_PIPE_SIZE_LOG2
You can change this to set the size of each worker thread pipe.
The value is in power of two and needs to smaller than 32 otherwise
the atomic integer type will overflow.
LICENSE: (zlib)
Copyright (c) 2016 Doug Binks
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
CONTRIBUTORS:
Doug Binks (implementation)
Micha Mettke (single header ANSI C conversion)
EXAMPLES:*/
#if 0
static void parallel_task(void *pArg, struct scheduler *s, sched_uint begin, sched_uint end, sched_uint thread) {
/* Do something here, cann issue additional tasks into the scheduler */
}
int main(int argc, const char **argv)
{
void *memory;
sched_size needed_memory;
struct scheduler sched;
scheduler_init(&sched, &needed_memory, SCHED_DEFAULT, 0);
memory = calloc(needed_memory, 1);
scheduler_start(&sched, memory);
{
struct sched_task task;
scheduler_add(&sched, &task, parallel_task, 0, 1);
scheduler_join(&sched, &task);
}
scheduler_stop(&sched);
free(memory);
}
#endif
/* ===============================================================
*
* HEADER
*
* =============================================================== */
#ifndef SCHED_H_
#define SCHED_H_
#ifdef __cplusplus
extern "C" {
#endif
#ifdef SCHED_STATIC
#define SCHED_API static
#else
#define SCHED_API extern
#endif
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 19901L)
#include <stdint.h>
#ifndef SCHED_UINT32
#define SCHED_UINT32 uint32_t
#endif
#ifndef SCHED_INT32
#define SCHED_INT32 int32_t
#endif
#ifndef SCHED_UINT_PTR
#define SCHED_UINT_PTR uintptr_t
#endif
#else
#ifndef SCHED_UINT32
#define SCHED_UINT32 unsigned int
#endif
#ifndef SCHED_INT32
#define SCHED_INT32 int
#endif
#ifndef SCHED_UINT_PTR
#define SCHED_UINT_PTR unsigned long
#endif
#endif
typedef unsigned char sched_byte;
typedef SCHED_UINT32 sched_uint;
typedef SCHED_INT32 sched_int;
typedef SCHED_UINT_PTR sched_size;
typedef SCHED_UINT_PTR sched_ptr;
struct scheduler;
typedef void(*sched_run)(void*, struct scheduler*, unsigned int begin,
unsigned int end, unsigned int thread_num);
struct sched_task {
void *userdata;
/* custum userdata to use in callback userdata */
sched_run exec;
/* function working on the task owner structure */
sched_uint size;
/* number of elements inside the set */
volatile sched_int run_count;
/* INTERNAL ONLY */
};
#define sched_task_done(t) (!(t)->run_count)
typedef void (*sched_profiler_callback_f)(void*, sched_uint thread_id);
struct sched_profiling {
void *userdata;
/* from the user provided data used in each callback */
sched_profiler_callback_f thread_start;
/* callback called as soon as a thread starts working */
sched_profiler_callback_f thread_stop;
/* callback called when as a thread is finished */
sched_profiler_callback_f wait_start;
/* callback called if a thread begins waiting */
sched_profiler_callback_f wait_stop;
/* callback called if a thread is woken up */
};
struct sched_event;
struct sched_thread_args;
struct sched_pipe;
struct scheduler {
struct sched_pipe *pipes;
/* pipe for every worker thread */
unsigned int threads_num;
/* number of worker threads */
struct sched_thread_args *args;
/* data used in the os thread callback */
void *threads;
/* os threads array */
volatile sched_int running;
/* flag whether the scheduler is running */
volatile sched_int thread_running;
/* number of thread that are currently running */
volatile sched_int thread_active;
/* number of thread that are currently active */
unsigned partitions_num;
/* divider for the array handled by a task */
struct sched_event *event;
/* os event to signal work */
sched_int have_threads;
/* flag whether the os threads have been created */
struct sched_profiling profiling;
/* profiling callbacks */
sched_size memory;
/* memory size */
};
#define SCHED_DEFAULT (-1)
SCHED_API void scheduler_init(struct scheduler*, sched_size *needed_memory,
sched_int thread_count, const struct sched_profiling*);
/* this function clears the scheduler and calculates the needed memory to run
Input:
- number of os threads to create inside the scheduler (or SCHED_DEFAULT for number of cpu cores)
- optional profiling callbacks for profiler (NULL if not wanted)
Output:
- needed memory for the scheduler to run
*/
SCHED_API void scheduler_start(struct scheduler*, void *memory);
/* this function starts running the scheduler and creates the previously set
* number of threads-1, which is sufficent to fill the system by
* including the main thread. Start can be called multiple times - it will wait
* for the completion before re-initializing.
Input:
- previously allocated memory to run the scheduler with
*/
SCHED_API void scheduler_add(struct sched_task*, struct scheduler*, sched_run func, void *pArg, sched_uint size);
/* this function adds a task into the scheduler to execute and directly returns
* if the pipe is not full. Otherwise the task is run directly. Should only be
* called from main thread or within task handler.
Input:
- function to execute to process the task
- userdata to call the execution function with
- array size that will be divided over multible threads
Output:
- task handle used to wait for the task to finish or check if done. Needs
to be persistent over the process of the task
*/
SCHED_API void scheduler_join(struct scheduler*, struct sched_task*);
/* this function waits for a previously started task to finish. Should only be
* called from thread which created the task scheduler, or within a task
* handler. if called with NULL it will try to run task and return if none
* available.
Input:
- previously started task to wait until it is finished
*/
SCHED_API void scheduler_wait(struct scheduler*);
/* this function waits for all task inside the scheduler to finish. Not
* guaranteed to work unless we know we are in a situation where task aren't
* being continuosly added. */
SCHED_API void scheduler_stop(struct scheduler*);
/* this function waits for all task inside the scheduler to finish and stops
* all threads and shuts the scheduler down. Not guaranteed to work unless we
* are in a situation where task aren't being continuosly added. */
#ifdef __cplusplus
}
#endif
#endif /* SCHED_H_ */
/* ===============================================================
*
* IMPLEMENTATION
*
* ===============================================================*/
#ifdef SCHED_IMPLEMENTATION
/* windows requires Windows.h even if you use mingw */
#if defined(_WIN32) || (defined(__MINGW32__) || defined(__MINGW64__))
#define WIN32_LEAN_AND_MEAN
#include <Windows.h>
#endif
/* make sure atomic and pointer types have correct size */
typedef int sched__check_ptr_size[(sizeof(void*) == sizeof(SCHED_UINT_PTR)) ? 1 : -1];
typedef int sched__check_ptr_uint32[(sizeof(sched_uint) == 4) ? 1 : -1];
typedef int sched__check_ptr_int32[(sizeof(sched_int) == 4) ? 1 : -1];
#ifdef SCHED_USE_ASSERT
#ifndef SCHED_ASSERT
#include <assert.h>
#define SCHED_ASSERT(expr) assert(expr)
#endif
#else
#define SCHED_ASSERT(expr)
#endif
#define SCHED_INTERN static
#define SCHED_GLOBAL static
#define SCHED_STORAGE static
#ifdef __cplusplus
/* C++ hates the C align of makro form so have to resort to templates */
template<typename T> struct sched_alignof;
template<typename T, int size_diff> struct sched_helper{enum {value = size_diff};};
template<typename T> struct sched_helper<T,0>{enum {value = sched_alignof<T>::value};};
template<typename T> struct sched_alignof{struct Big {T x; char c;}; enum {
diff = sizeof(Big) - sizeof(T), value = sched_helper<Big, diff>::value};};
#define SCHED_ALIGNOF(t) (sched_alignof<t>::value);
#else
#define SCHED_ALIGNOF(t) ((char*)(&((struct {char c; t _h;}*)0)->_h) - (char*)0)
#endif
/* Pointer to Integer type conversion for pointer alignment */
#if defined(__PTRDIFF_TYPE__) /* This case should work for GCC*/
# define SCHED_UINT_TO_PTR(x) ((void*)(__PTRDIFF_TYPE__)(x))
# define SCHED_PTR_TO_UINT(x) ((sched_size)(__PTRDIFF_TYPE__)(x))
#elif !defined(__GNUC__) /* works for compilers other than LLVM */
# define SCHED_UINT_TO_PTR(x) ((void*)&((char*)0)[x])
# define SCHED_PTR_TO_UINT(x) ((sched_size)(((char*)x)-(char*)0))
#elif defined(SCHED_USE_FIXED_TYPES) /* used if we have <stdint.h> */
# define SCHED_UINT_TO_PTR(x) ((void*)(uintptr_t)(x))
# define SCHED_PTR_TO_UINT(x) ((uintptr_t)(x))
#else /* generates warning but works */
# define SCHED_UINT_TO_PTR(x) ((void*)(x))
# define SCHED_PTR_TO_UINT(x) ((sched_size)(x))
#endif
/* Pointer math*/
#define SCHED_PTR_ADD(t, p, i) ((t*)((void*)((sched_byte*)(p) + (i))))
#define SCHED_ALIGN_PTR(x, mask)\
(SCHED_UINT_TO_PTR((SCHED_PTR_TO_UINT((sched_byte*)(x) + (mask-1)) & ~(mask-1))))
/* Helper */
#define SCHED_UNUSED(x) ((void)x)
#define SCHED_MIN(a,b) (((a)<(b))?(a):(b))
#define SCHEDULER_MAX(a,b) (((a)>(b))?(a):(b))
#ifndef SCHED_MEMSET
#define SCHED_MEMSET sched_memset
#endif
SCHED_INTERN void
sched_memset(void *ptr, sched_int c0, sched_size size)
{
#define word unsigned
#define wsize sizeof(word)
#define wmask (wsize - 1)
unsigned char *dst = (unsigned char*)ptr;
unsigned c = 0;
sched_size t = 0;
if ((c = (unsigned char)c0) != 0) {
c = (c << 8) | c; /* at least 16-bits */
if (sizeof(unsigned int) > 2)
c = (c << 16) | c; /* at least 32-bits*/
if (sizeof(unsigned int) > 4)
c = (c << 32) | c; /* at least 64-bits*/
}
/* to small of a word count */
dst = (unsigned char*)ptr;
if (size < 3 * wsize) {
while (size--) *dst++ = (unsigned char)c0;
return;
}
/* align destination */
if ((t = SCHED_PTR_TO_UINT(dst) & wmask) != 0) {
t = wsize -t;
size -= t;
do {
*dst++ = (unsigned char)c0;
} while (--t != 0);
}
/* fill word */
t = size / wsize;
do {
*(word*)((void*)dst) = c;
dst += wsize;
} while (--t != 0);
/* fill trailing bytes */
t = (size & wmask);
if (t != 0) {
do {
*dst++ = (unsigned char)c0;
} while (--t != 0);
}
#undef word
#undef wsize
#undef wmask
}
#define sched_zero_struct(s) sched_zero_size(&s, sizeof(s))
#define sched_zero_array(p,n) sched_zero_size(p, (n) * sizeof((p)[0]))
SCHED_INTERN void
sched_zero_size(void *ptr, sched_size size)
{
SCHED_MEMSET(ptr, 0, size);
}
/* ---------------------------------------------------------------
* ATOMIC
* ---------------------------------------------------------------*/
#if defined(_WIN32) && !(defined(__MINGW32__) || defined(__MINGW64__))
#include <intrin.h>
void _ReadWriteBarrier();
#pragma intrinsic(_ReadWriteBarrier);
#pragma intrinsic(_InterlockedCompareExchange);
#pragma intrinsic(_InterlockedExchangeAdd);
#define SCHED_BASE_MEMORY_BARRIER_ACQUIRE() _ReadWriteBarrier()
#define SCHED_BASE_MEMORY_BARRIER_RELEASE() _ReadWriteBarrier()
#define SCHED_BASE_ALIGN(x) __declspec(align(x))
#else
#define SCHED_BASE_MEMORY_BARRIER_ACQUIRE() __asm__ __volatile__("": : :"memory")
#define SCHED_BASE_MEMORY_BARRIER_RELEASE() __asm__ __volatile__("": : :"memory")
#define SCHED_BASE_ALIGN(x) __attribute__((aligned(x)))
#endif
SCHED_INTERN sched_uint
sched_atomic_cmp_swp(volatile sched_uint *dst, sched_uint swap, sched_uint cmp)
{
/* Atomically performs: if (*dst == swapTp){ *dst = swapTo;}
* return old *dst (so if sucessfull return cmp) */
#if defined(_WIN32) && !(defined(__MINGW32__) || defined(__MINGW64__))
/* assumes two's complement - unsigned /signed conversion leads to same bit pattern */
return _InterlockedCompareExchange((volatile long*)dst, swap, cmp);
#else
return __sync_val_compare_and_swap(dst, cmp, swap);
#endif
}
SCHED_INTERN sched_int
sched_atomic_add(volatile sched_int *dst, sched_int value)
{
/* Atomically performs: tmp = *dst: *dst += value; return tmp; */
#if defined(_WIN32) && !(defined(__MINGW32__) || defined(__MINGW64__))
return _InterlockedExchangeAdd((long*)dst, value);
#else
return (sched_int)__sync_add_and_fetch(dst, value);
#endif
}
/* ---------------------------------------------------------------
* THREAD
* ---------------------------------------------------------------*/
#if defined(_WIN32) && !(defined(__MINGW32__) || defined(__MINGW64__))
#define SCHED_THREAD_FUNC_DECL DWORD WINAPI
#define SCHED_THREAD_LOCAL __declspec(thread)
typedef HANDLE sched_thread;
struct sched_event {
HANDLE event;
sched_int count_waiters;
};
const sched_uint SCHED_INFINITE = INFINITE;
SCHED_INTERN sched_int
sched_thread_create(sched_thread *returnid, DWORD(WINAPI *StartFunc)(void*), void *arg)
{
DWORD thread;
*returnid = CreateThread(0,0, StartFunc, arg, 0, &thread);
return *returnid != NULL;
}
SCHED_INTERN sched_int
sched_thread_term(sched_thread threadid)
{
return CloseHandle(threadid) == 0;
}
SCHED_INTERN sched_uint
sched_num_hw_threads(void)
{
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
return sysinfo.dwNumberOfProcessors;
}
SCHED_INTERN struct sched_event
sched_event_create(void)
{
struct sched_event ret;
ret.event = CreateEvent(NULL, TRUE, FALSE, NULL);
ret.count_waiters = 0;
return ret;
}
SCHED_INTERN void
sched_event_close(struct sched_event *eventid)
{
CloseHandle(eventid->event);
}
SCHED_INTERN void
sched_event_wait(struct sched_event *eventid, sched_int ms)
{
DWORD ret_val;
sched_int prev;
sched_atomic_add(&eventid->count_waiters, 1);
ret_val = WaitForSingleObject(eventid->event, ms);
prev = sched_atomic_add(&eventid->count_waiters, -1);
if (prev == 1) /* we were the last to awaken, so reset event. */
ResetEvent(eventid->event);
SCHED_ASSERT(ret_val != WAIT_FAILED);
SCHED_ASSERT(prev != 0);
}
SCHED_INTERN void
sched_event_signal(struct sched_event *eventid)
{
SetEvent(eventid->event);
}
#else
/* POSIX */
#include <pthread.h>
#if !(defined(__MINGW32__) || defined(__MINGW64__))
#include <unistd.h>
#include <time.h>
#endif
#define SCHED_THREAD_FUNC_DECL void*
#define SCHED_THREAD_LOCAL __thread
typedef pthread_t sched_thread;
struct sched_event {
pthread_cond_t cond;
pthread_mutex_t mutex;
};
const sched_int SCHED_INFINITE = -1;
SCHED_INTERN sched_int
sched_thread_create(sched_thread *returnid, void*(*StartFunc)(void*), void *arg)
{
sched_int ret_val;
SCHED_ASSERT(returnid);
SCHED_ASSERT(StartFunc);
ret_val = pthread_create(returnid, NULL, StartFunc, arg);
return(ret_val == 0);
}
SCHED_INTERN sched_int
sched_thread_term(sched_thread threadid)
{
return (pthread_cancel(threadid) == 0);
}
SCHED_INTERN struct sched_event
sched_event_create(void)
{
struct sched_event event = {PTHREAD_COND_INITIALIZER, PTHREAD_MUTEX_INITIALIZER};
return event;
}
SCHED_INTERN void
sched_event_close(struct sched_event *eventid)
{
/* do not need to close event */
SCHED_UNUSED(eventid);
}
SCHED_INTERN void
sched_event_wait(struct sched_event *eventid, sched_int ms)
{
SCHED_ASSERT(eventid);
pthread_mutex_lock(&eventid->mutex);
if (ms == SCHED_INFINITE) {
pthread_cond_wait(&eventid->cond, &eventid->mutex);
} else {
struct timespec waittime;
waittime.tv_sec = ms/1000;
ms -= (sched_int)waittime.tv_sec*1000;
waittime.tv_nsec = ms * 1000;
pthread_cond_timedwait(&eventid->cond, &eventid->mutex, &waittime);
}
pthread_mutex_unlock(&eventid->mutex);
}
SCHED_INTERN void
sched_event_signal(struct sched_event *eventid)
{
SCHED_ASSERT(eventid);
pthread_mutex_lock(&eventid->mutex);
pthread_cond_broadcast(&eventid->cond);
pthread_mutex_unlock(&eventid->mutex);
}
SCHED_INTERN sched_uint
sched_num_hw_threads(void)
{
#ifdef _WIN32
SYSTEM_INFO si;
GetSystemInfo(&si);
return si.dwNumberOfProcessors;
#else
return (sched_uint)sysconf(_SC_NPROCESSORS_ONLN);
#endif
}
#endif
/* ---------------------------------------------------------------
* PIPE
* ---------------------------------------------------------------*/
/* PIPE
Single writer, multiple reader thread safe pipe using (semi) lockless programming
Readers can only read from the back of the pipe
The single writer can write to the front of the pipe, and read from both
ends (a writer can be a reader) for many of the principles used here,
see http://msdn.microsoft.com/en-us/library/windows/desktop/ee418650(v=vs.85).aspx
Note: using log2 sizes so we do not need to clamp (multi-operation)
Note this is not true lockless as the use of flags as a form of lock state.
*/
/* IMPORTANT: Define this to control the maximum number of elements inside a
* pipe as a log2 number. Should be smaller than 32 since it would otherwise
* overflow the atomic integer type.*/
#ifndef SCHED_PIPE_SIZE_LOG2
#define SCHED_PIPE_SIZE_LOG2 8
#endif
#define SCHED_PIPE_SIZE (2 << SCHED_PIPE_SIZE_LOG2)
#define SCHED_PIPE_MASK (SCHED_PIPE_SIZE-1)
typedef int sched__check_pipe_size[(SCHED_PIPE_SIZE_LOG2 < 32) ? 1 : -1];
/* 32-Bit for compare-and-swap */
#define SCHED_PIPE_INVALID 0xFFFFFFFF
#define SCHED_PIPE_CAN_WRITE 0x00000000
#define SCHED_PIPE_CAN_READ 0x11111111
struct sched_task_partition {
sched_uint start;
sched_uint end;
};
struct sched_subset_task {
struct sched_task *task;
struct sched_task_partition partition;
};
struct sched_pipe {
struct sched_subset_task buffer[SCHED_PIPE_SIZE];
/* read and write index allow fast access to the pipe
but actual access is controlled by the access flags. */
volatile sched_uint SCHED_BASE_ALIGN(4) write;
volatile sched_uint SCHED_BASE_ALIGN(4) read_count;
volatile sched_uint flags[SCHED_PIPE_SIZE];
volatile sched_uint SCHED_BASE_ALIGN(4) read;
};
/* utility function, not intended for general use. Should only be used very prudenlty*/
#define sched_pipe_is_empty(p) (((p)->write - (p)->read_count) == 0)
SCHED_INTERN sched_int
sched_pipe_read_back(struct sched_pipe *pipe, struct sched_subset_task *dst)
{
/* return false if we are unable to read. This is thread safe for both
* multiple readers and the writer */
sched_uint to_use;
sched_uint previous;
sched_uint actual_read;
sched_uint read_count;
SCHED_ASSERT(pipe);
SCHED_ASSERT(dst);
/* we get hold of the read index for consistency,
* and do first pass starting at read count */
read_count = pipe->read_count;
to_use = read_count;
while (1) {
sched_uint write_index = pipe->write;
sched_uint num_in_pipe = write_index - read_count;
if (!num_in_pipe)
return 0;
/* move back to start */
if (to_use >= write_index)
to_use = pipe->read;
/* power of two sizes ensures we can perform AND for a modulus */
actual_read = to_use & SCHED_PIPE_MASK;
/* multiple potential readers means we should check if the data is valid
* using an atomic compare exchange */
previous = sched_atomic_cmp_swp(&pipe->flags[actual_read], SCHED_PIPE_INVALID, SCHED_PIPE_CAN_READ);
if (previous == SCHED_PIPE_CAN_READ)
break;
/* update known read count */
read_count = pipe->read_count;
++to_use;
}
/* we update the read index using an atomic add, ws we've only read one piece
* of data. This ensures consitency of the read index, and the above loop ensures
* readers only read from unread data. */
sched_atomic_add((volatile sched_int*)&pipe->read_count, 1);
SCHED_BASE_MEMORY_BARRIER_ACQUIRE();
/* now read data, ensuring we do so after above reads & CAS */
*dst = pipe->buffer[actual_read];
pipe->flags[actual_read] = SCHED_PIPE_CAN_WRITE;
return 1;
}
SCHED_INTERN sched_int
sched_pipe_read_front(struct sched_pipe *pipe, struct sched_subset_task *dst)
{
sched_uint prev;
sched_uint actual_read = 0;
sched_uint write_index;
sched_uint front_read;
write_index = pipe->write;
front_read = write_index;
/* Mutliple potential reads mean we should check if the data is valid,
* using an atomic compare exchange - which acts as a form of lock */
prev = SCHED_PIPE_INVALID;
actual_read = 0;
while (1) {
/* power of two ensures we can use a simple cal without modulus */
sched_uint read_count = pipe->read_count;
sched_uint num_in_pipe = write_index - read_count;
if (!num_in_pipe || !front_read) {
pipe->read = read_count;
return 0;
}
--front_read;
actual_read = front_read & SCHED_PIPE_MASK;
prev = sched_atomic_cmp_swp(&pipe->flags[actual_read], SCHED_PIPE_INVALID, SCHED_PIPE_CAN_READ);
if (prev == SCHED_PIPE_CAN_READ) break;
else if (pipe->read >= front_read) return 0;
}
/* now read data, ensuring we do so after above reads & CAS */
*dst = pipe->buffer[actual_read];
pipe->flags[actual_read] = SCHED_PIPE_CAN_WRITE;
SCHED_BASE_MEMORY_BARRIER_RELEASE();
/* 32-bit aligned stores are atomic, and writer owns the write index */
--pipe->write;
return 1;
}
SCHED_INTERN sched_int
sched_pipe_write(struct sched_pipe *pipe, const struct sched_subset_task *src)
{
sched_uint actual_write;
sched_uint write_index;
SCHED_ASSERT(pipe);
SCHED_ASSERT(src);
/* The writer 'owns' the write index and readers can only reduce the amout of
* data in the pipe. We get hold of both values for consistentcy and to
* reduce false sharing impacting more than one access */
write_index = pipe->write;
/* power of two sizes ensures we can perform AND for a modulus*/
actual_write = write_index & SCHED_PIPE_MASK;
/* a read may still be reading this item, as there are multiple readers */
if (pipe->flags[actual_write] != SCHED_PIPE_CAN_WRITE)
return 0; /* still being read, so have caught up with tail */
/* as we are the only writer we can update the data without atomics whilst
* the write index has not been updated. */
pipe->buffer[actual_write] = *src;
pipe->flags[actual_write] = SCHED_PIPE_CAN_READ;
/* we need to ensure the above occur prior to updating the write index,
* otherwise another thread might read before it's finished */
SCHED_BASE_MEMORY_BARRIER_RELEASE();
/* 32-bit aligned stores are atomic, and writer owns the write index */
++write_index;
pipe->write = write_index;
return 1;
}
/* ---------------------------------------------------------------
* SCHEDULER
* ---------------------------------------------------------------*/
/* IMPORTANT: Define this to control the maximum number of iterations for a
* thread to check for work until it is send into a sleeping state */
#ifndef SCHED_SPIN_COUNT_MAX
#define SCHED_SPIN_COUNT_MAX 100
#endif
struct sched_thread_args {
sched_uint thread_num;
struct scheduler *scheduler;
};
SCHED_GLOBAL const sched_size sched_pipe_align = SCHED_ALIGNOF(struct sched_pipe);
SCHED_GLOBAL const sched_size sched_arg_align = SCHED_ALIGNOF(struct sched_thread_args);
SCHED_GLOBAL const sched_size sched_thread_align = SCHED_ALIGNOF(sched_thread);
SCHED_GLOBAL const sched_size sched_event_align = SCHED_ALIGNOF(struct sched_event);
SCHED_GLOBAL SCHED_THREAD_LOCAL sched_uint gtl_thread_num = 0;
SCHED_INTERN sched_int
sched_try_running_task(struct scheduler *s, sched_uint thread_num, sched_uint *pipe_hint)
{
/* check for tasks */
struct sched_subset_task subtask;
sched_int have_task = sched_pipe_read_front(&s->pipes[thread_num], &subtask);
sched_uint thread_to_check = *pipe_hint;
sched_uint check_count = 0;
while (!have_task && check_count < s->threads_num) {
thread_to_check = (*pipe_hint + check_count) % s->threads_num;
if (thread_to_check != thread_num)
have_task = sched_pipe_read_back(&s->pipes[thread_to_check], &subtask);
++check_count;
}
if (have_task) {
/* update hint, will preserve value unless actually got task from another thread */
*pipe_hint = thread_to_check;
/* the task has already been divided up by scheduler_add, so just run */
subtask.task->exec(subtask.task->userdata, s, subtask.partition.start,
subtask.partition.end, thread_num);
sched_atomic_add(&subtask.task->run_count, -1);
}
return have_task;
}
SCHED_INTERN void
scheduler_wait_for_work(struct scheduler *s, sched_uint thread_num)
{
sched_uint i = 0;
sched_int have_tasks = 0;
for (i = 0; i < s->threads_num; ++i) {
if (!sched_pipe_is_empty(&s->pipes[i])) {
have_tasks = 1;
break;
}
}
if (!have_tasks) {
if (s->profiling.wait_start)
s->profiling.wait_start(s->profiling.userdata, thread_num);
sched_atomic_add(&s->thread_active, -1);
sched_event_wait(s->event, SCHED_INFINITE);
sched_atomic_add(&s->thread_active, +1);
if (s->profiling.wait_stop)
s->profiling.wait_stop(s->profiling.userdata, thread_num);
}
}
SCHED_INTERN SCHED_THREAD_FUNC_DECL
sched_tasking_thread_f(void *pArgs)
{
sched_uint spin_count = 0, hint_pipe;
struct sched_thread_args args = *(struct sched_thread_args*)pArgs;
sched_uint thread_num = args.thread_num;
struct scheduler *s = args.scheduler;
gtl_thread_num = args.thread_num;
sched_atomic_add(&s->thread_active, 1);
if (s->profiling.thread_start)
s->profiling.thread_start(s->profiling.userdata, thread_num);
hint_pipe = thread_num + 1;
while (s->running) {
if (!sched_try_running_task(s, thread_num, &hint_pipe)) {
++spin_count;
if (spin_count > SCHED_SPIN_COUNT_MAX)
scheduler_wait_for_work(s, thread_num);
} else spin_count = 0;
}
sched_atomic_add(&s->thread_running, -1);
if (s->profiling.thread_stop)
s->profiling.thread_stop(s->profiling.userdata, thread_num);
return 0;
}
SCHED_API void
scheduler_init(struct scheduler *s, sched_size *memory,
sched_int thread_count, const struct sched_profiling *prof)
{
SCHED_ASSERT(s);
SCHED_ASSERT(memory);
sched_zero_struct(*s);
/* ensure we have sufficent tasks to equally fill either all threads
* including the main or just the threads we launched, this is outside the
* first start as we awant to be able to runtime change it.*/
s->threads_num = (thread_count == SCHED_DEFAULT)?
sched_num_hw_threads() : (sched_uint)thread_count;
s->partitions_num = (s->threads_num == 1) ?
1: (s->threads_num * (s->threads_num - 1));
if (prof) s->profiling = *prof;
/* calculate needed memory */
SCHED_ASSERT(s->threads_num > 0);
*memory = 0;
*memory += sizeof(struct sched_pipe) * s->threads_num;
*memory += sizeof(struct sched_thread_args) * s->threads_num;
*memory += sizeof(sched_thread) * s->threads_num;
*memory += sizeof(struct sched_event);
*memory += sched_pipe_align + sched_arg_align;
*memory += sched_thread_align + sched_event_align;
s->memory = *memory;
}
SCHED_API void
scheduler_start(struct scheduler *s, void *memory)
{
sched_uint i = 0;
SCHED_ASSERT(s);
SCHED_ASSERT(memory);
if (s->have_threads) return;
scheduler_stop(s);
/* setup scheduler memory */
sched_zero_size(memory, s->memory);
s->pipes = (struct sched_pipe*)SCHED_ALIGN_PTR(memory, sched_pipe_align);
s->threads = SCHED_ALIGN_PTR(s->pipes + s->threads_num, sched_thread_align);
s->args = (struct sched_thread_args*) SCHED_ALIGN_PTR(
SCHED_PTR_ADD(void, s->threads, sizeof(sched_thread) * s->threads_num), sched_arg_align);
s->event = (struct sched_event*)SCHED_ALIGN_PTR(s->args + s->threads_num, sched_event_align);
*s->event = sched_event_create();
/* Create one less thread than thread_num as the main thread counts as one */
s->args[0].thread_num = 0;
s->args[0].scheduler = s;
#if defined(_WIN32) && !(defined(__MINGW32__) || defined(__MINGW64__))
((sched_thread*)(s->threads)) [0] = 0;
#endif
s->thread_running = 1;
s->thread_active = 1;
s->running = 1;
/* start hardware threads */
for (i = 1; i < s->threads_num; ++i) {
s->args[i].thread_num = i;
s->args[i].scheduler = s;
sched_thread_create(&((sched_thread*)(s->threads))[i],
sched_tasking_thread_f, &s->args[i]);
s->thread_running++;
}
s->have_threads = 1;
}
SCHED_API void
scheduler_add(struct sched_task *task, struct scheduler *s,
sched_run func, void *pArg, sched_uint size)
{
struct sched_subset_task subtask;
sched_uint range_to_run;
sched_uint range_left;
sched_uint num_added = 0;
SCHED_ASSERT(s);
SCHED_ASSERT(task);
SCHED_ASSERT(func);
task->userdata = pArg;
task->exec = func;
task->size = size;
subtask.task = task;
subtask.partition.start = 0;
subtask.partition.end = task->size;
task->run_count = -1;
/* divide task up and add to pipe */
range_to_run = SCHEDULER_MAX(1, task->size / s->partitions_num);
range_left = subtask.partition.end - subtask.partition.start;
num_added = 0;
while (range_left) {
if (range_to_run > range_left)
range_to_run = range_left;
subtask.partition.start = task->size - range_left;
subtask.partition.end = subtask.partition.start + range_to_run;
range_left -= range_to_run;
/* add partition to pipe */
++num_added;
if (!sched_pipe_write(&s->pipes[gtl_thread_num], &subtask)) {
/* pipe is full therefore directly call it */
subtask.task->exec(subtask.task->userdata, s, subtask.partition.start,
subtask.partition.end, gtl_thread_num);
--num_added;
}
}
/* increment running count by number added plus one to account for start value */
sched_atomic_add(&task->run_count, (sched_int)(num_added+1));
if (s->thread_active < s->thread_running)
sched_event_signal(s->event);
}
SCHED_API void
scheduler_join(struct scheduler *s, struct sched_task *task)
{
sched_uint pipe_to_check = gtl_thread_num+1;
SCHED_ASSERT(s);
if (task) {
while (task->run_count)
sched_try_running_task(s, gtl_thread_num, &pipe_to_check);
} else {