-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
218 lines (181 loc) · 10.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import os
import time
import argparse
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from LookIntoObject import Model
from config import LoadConfig
from dataset import collate_fn, dataset
from utils import eval_turn, load_data_transformers
from pdb import set_trace as bp
def train(Config,
model,
epoch_num,
optimizer,
exp_lr_scheduler,
dataset,
data_loader,
data_size=448,
save_per_epoch=5
):
train_epoch_step = data_loader['train'].__len__()
# set loss function and positive image list for OEL
get_cls_loss = torch.nn.CrossEntropyLoss()
if Config.module == 'LIO' or Config.module == 'OEL' or Config.module == 'SCL':
from LookIntoObject import OEL_make_pseudo_mask, get_SCL_loss
get_OEL_loss = torch.nn.MSELoss()
if Config.module == 'LIO' or Config.module == 'OEL':
positive_image_list = dataset.positive_image_list
start_time = time.time()
model.train()
epoch = 0
while(epoch < epoch_num):
for step, data in enumerate(data_loader['train']):
inputs, labels, _ = data
inputs = inputs.cuda()
labels = torch.from_numpy(np.array(labels)).cuda()
if Config.module == 'LIO':
outputs, featuremap_7x7, oel_mask, scl_polar_coordinate = model(inputs)
cls_loss = get_cls_loss(outputs, labels)
pseudo_mask = OEL_make_pseudo_mask(model, featuremap_7x7.detach(), labels, positive_image_list)
OEL_loss = get_OEL_loss(oel_mask, pseudo_mask) # equation (4) in the paper
SCL_loss = get_SCL_loss(scl_polar_coordinate['pred'], scl_polar_coordinate['gt'], oel_mask.detach())
# equation (10) in the paper.
loss = cls_loss + 0.1 * OEL_loss + 0.1 * SCL_loss
elif Config.module == 'OEL':
outputs, featuremap_7x7, oel_mask = model(inputs)
cls_loss = get_cls_loss(outputs, labels)
pseudo_mask = OEL_make_pseudo_mask(model, featuremap_7x7.detach(), labels, positive_image_list)
OEL_loss = get_OEL_loss(oel_mask, pseudo_mask) # equation (4) in the paper
loss = cls_loss + 0.1 * OEL_loss
elif Config.module == 'SCL':
outputs, featuremap_7x7, oel_mask, scl_polar_coordinate = model(inputs)
cls_loss = get_cls_loss(outputs, labels)
SCL_loss = get_SCL_loss(scl_polar_coordinate['pred'], scl_polar_coordinate['gt'], oel_mask.detach())
loss = cls_loss + 0.1 * SCL_loss
else:
outputs = model(inputs)
loss = get_cls_loss(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
exp_lr_scheduler.step()
# for train log
if step % 100 == 0:
elapsed_time = int(time.time() - start_time)
current_lr = optimizer.param_groups[0]['lr']
if Config.module == 'LIO':
train_log = f'epoch: {epoch} / {epoch_num} step: {step:-5d} / {train_epoch_step:d} loss: {loss.detach().item():6.4f}, OEL_loss: {OEL_loss.detach().item():6.4f}, SCL_loss: {SCL_loss.detach().item():6.4f} lr: {current_lr:0.8f} elapsed_time: {elapsed_time}'
elif Config.module == 'OEL':
train_log = f'epoch: {epoch} / {epoch_num} step: {step:-5d} / {train_epoch_step:d} loss: {loss.detach().item():6.4f}, OEL_loss: {OEL_loss.detach().item():6.4f} lr: {current_lr:0.8f} elapsed_time: {elapsed_time}'
elif Config.module == 'SCL':
train_log = f'epoch: {epoch} / {epoch_num} step: {step:-5d} / {train_epoch_step:d} loss: {loss.detach().item():6.4f}, SCL_loss: {SCL_loss.detach().item():6.4f} lr: {current_lr:0.8f} elapsed_time: {elapsed_time}'
else:
train_log = f'epoch: {epoch} / {epoch_num} step: {step:-5d} / {train_epoch_step:d} loss: {loss.detach().item():6.4f} lr: {current_lr:0.8f} elapsed_time: {elapsed_time}'
print(train_log)
with open(os.path.join(Config.exp_name, 'log.txt'), 'a') as log_file:
log_file.write(train_log + '\n')
epoch += 1
# evaluation and save models. To see training progress, we also conduct evaluation when 'epoch==1'
if epoch % save_per_epoch == 0 or epoch == 1:
print(80 * '-')
model.eval()
test_acc1, test_acc2, test_acc3 = eval_turn(Config, model, data_loader['test'], 'test', epoch)
model.train()
if epoch != 1:
save_path = os.path.join(Config.exp_name, f'weights_{epoch}_{test_acc1:0.4f}_{test_acc3:0.4f}.pth')
torch.save(model.state_dict(), save_path)
print(f'saved model to{save_path}')
def parse_args():
parser = argparse.ArgumentParser(description='parameters')
parser.add_argument('--exp_name', default='tmp', type=str, help='experiment name')
parser.add_argument('--seed', default=1111, type=int, help='random seed')
parser.add_argument('--data', dest='dataset', default='CUB', type=str)
parser.add_argument('--save', dest='resume', default=None, type=str, help='path to saved model')
parser.add_argument('--epoch', dest='epoch', default=50, type=int)
parser.add_argument('--spe', dest='save_per_epoch', default=5, type=int)
parser.add_argument('--tb', dest='train_batch', default=16, type=int)
parser.add_argument('--testb', dest='test_batch', default=128, type=int)
parser.add_argument('--tnw', dest='train_num_workers', default=4, type=int)
parser.add_argument('--vnw', dest='test_num_workers', default=4, type=int)
parser.add_argument('--lr', dest='base_lr', default=0.0008, type=float)
parser.add_argument('--size', dest='resize_resolution', default=512, type=int)
parser.add_argument('--crop', dest='crop_resolution', default=448, type=int)
# model
parser.add_argument('--backbone', dest='backbone', default='resnet50', type=str)
parser.add_argument('--mo', dest='module', default='onlyCLS', type=str,
help='|Look-into-Object (LIO)|Object Extent Learning (OEL)|Spatial Context Learning (SCL)|')
args = parser.parse_args()
return args
if __name__ == '__main__':
if torch.cuda.device_count() > 1:
print('For my setting, only use 1 GPU so it should be missed CUDA_VISIBLE_DEVICES=0 or typo')
sys.exit()
args = parse_args()
print(args)
Config = LoadConfig(args, 'train')
with open(os.path.join(Config.exp_name, 'log.txt'), 'a') as log_file:
log_file.write(str(args) + '\n')
"""Seed and GPU setting"""
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed) # if you are using multi-GPU.
torch.cuda.manual_seed(args.seed)
cudnn.benchmark = True
cudnn.deterministic = True
""" dataset & dataloader """
transformers = load_data_transformers(args.resize_resolution, args.crop_resolution)
train_set = dataset(Config=Config,
anno=Config.train_anno,
common_aug=transformers["common_aug"],
totensor=transformers["train_totensor"],
is_train=True)
test_set = dataset(Config=Config,
anno=Config.test_anno,
common_aug=transformers["None"],
totensor=transformers["test_totensor"],
is_train=False)
dataloader = {}
dataloader['train'] = torch.utils.data.DataLoader(train_set,
batch_size=args.train_batch,
shuffle=True,
num_workers=args.train_num_workers,
collate_fn=collate_fn,
pin_memory=False)
setattr(dataloader['train'], 'total_item_len', len(train_set))
dataloader['test'] = torch.utils.data.DataLoader(test_set,
batch_size=args.test_batch,
shuffle=False,
num_workers=args.test_num_workers,
collate_fn=collate_fn,
pin_memory=False)
setattr(dataloader['test'], 'total_item_len', len(test_set))
setattr(dataloader['test'], 'num_cls', Config.numcls)
print('Load imagenet pretrained model ResNet50')
model = Model(Config)
model = torch.nn.DataParallel(model).cuda()
# print(model)
with open(os.path.join(Config.exp_name, 'log.txt'), 'a') as log_file:
log_file.write(repr(model) + '\n')
# optimizer prepare
optimizer = torch.optim.SGD(model.parameters(), lr=args.base_lr, momentum=0.9)
# exp_lr_scheduler=torch.optim.lr_scheduler.StepLR(optimizer,step_size=args.decay_step,gamma=0.1)
# for superconvergence with one cycle learning rate
step_up_size = len(dataloader['train']) * args.epoch / 2
step_down_size = len(dataloader['train']) * args.epoch / 2
scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=args.base_lr, max_lr=args.base_lr * 10,
step_size_up=step_up_size, step_size_down=step_down_size,
cycle_momentum=False)
# train
train(Config,
model,
epoch_num=args.epoch,
optimizer=optimizer,
exp_lr_scheduler=scheduler,
dataset=train_set,
data_loader=dataloader,
data_size=args.crop_resolution,
save_per_epoch=args.save_per_epoch)