-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathgsc.py
362 lines (319 loc) · 17.8 KB
/
gsc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import random
try:
from transformers import (ConstantLRSchedule, WarmupLinearSchedule, WarmupConstantSchedule)
except:
from transformers import get_constant_schedule, get_constant_schedule_with_warmup, get_linear_schedule_with_warmup
from modeling.modeling_gsc import *
from utils.optimization_utils import OPTIMIZER_CLASSES
from utils.parser_utils import *
import torch.nn.functional as F
import numpy as np
import socket, os, subprocess, datetime
print(socket.gethostname())
print ("pid:", os.getpid())
print ("screen: %s" % subprocess.check_output('echo $STY', shell=True).decode('utf'))
print ("gpu: %s" % subprocess.check_output('echo $CUDA_VISIBLE_DEVICES', shell=True).decode('utf'))
def evaluate_accuracy(eval_set, model):
n_samples, n_correct = 0, 0
model.eval()
with torch.no_grad():
for qids, labels, *input_data in tqdm(eval_set):
logits = model(*input_data)
n_correct += (logits.argmax(1) == labels).sum().item()
n_samples += labels.size(0)
return n_correct / n_samples
def main():
parser = get_parser()
args, _ = parser.parse_known_args()
parser.add_argument('--mode', default='train', choices=['train', 'eval_detail'], help='run training or evaluation')
parser.add_argument('--save_dir', default=f'./saved_models/qagsc/', help='model output directory')
parser.add_argument('--save_model', dest='save_model', action='store_true')
parser.add_argument('--load_model_path', default=None)
parser.add_argument('--load_sentvecs_model_path', default=None)
parser.add_argument('--without_amp', dest='without_amp', action='store_true', help='disable mixed precision training')
# data
parser.add_argument('--num_relation', default=38, type=int, help='number of relations')
parser.add_argument('--train_adj', default=f'data/{args.dataset}/graph/train.graph.adj.pk')
parser.add_argument('--dev_adj', default=f'data/{args.dataset}/graph/dev.graph.adj.pk')
parser.add_argument('--test_adj', default=f'data/{args.dataset}/graph/test.graph.adj.pk')
parser.add_argument('--use_cache', default=True, type=bool_flag, nargs='?', const=True, help='use cached data to accelerate data loading')
# model architecture
parser.add_argument('-k', '--k', default=2, type=int, help='perform k-layer message passing')
parser.add_argument('--enc_dim', default=32, type=int, help='hidden dimension of the edge encoder')
parser.add_argument('--fc_dim', default=512, type=int, help='number of FC hidden units')
parser.add_argument('--fc_layer_num', default=0, type=int, help='number of FC layers')
parser.add_argument('--counter_type', default=f'gsc', help='graph soft counter or hard counter')
parser.add_argument('--max_node_num', default=32, type=int)
parser.add_argument('--simple', default=False, type=bool_flag, nargs='?', const=True)
parser.add_argument('--subsample', default=1.0, type=float)
parser.add_argument('--init_range', default=0.02, type=float, help='stddev when initializing with normal distribution')
# regularization
parser.add_argument('--dropoutf', type=float, default=0.0, help='dropout for fully-connected layers')
# optimization
parser.add_argument('-dlr', '--decoder_lr', default=1e-2, type=float, help='learning rate')
parser.add_argument('-mbs', '--mini_batch_size', default=2, type=int)
parser.add_argument('-ebs', '--eval_batch_size', default=4, type=int)
parser.add_argument('--unfreeze_epoch', default=4, type=int)
parser.add_argument('--refreeze_epoch', default=10000, type=int)
parser.add_argument('-h', '--help', action='help', default=argparse.SUPPRESS, help='show this help message and exit')
args = parser.parse_args()
if args.simple:
parser.set_defaults(k=1)
args = parser.parse_args()
if args.mode == 'train':
train(args)
elif args.mode == 'eval_detail':
eval_detail(args)
else:
raise ValueError('Invalid mode')
def train(args):
print(args)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if torch.cuda.is_available() and args.cuda:
torch.cuda.manual_seed(args.seed)
config_path = os.path.join(args.save_dir, 'config.json')
model_path = os.path.join(args.save_dir, 'model.pt')
log_path = os.path.join(args.save_dir, 'log.csv')
export_config(args, config_path)
check_path(model_path)
with open(log_path, 'w') as fout:
fout.write('step,dev_acc,test_acc\n')
###################################################################################################
# Load data #
###################################################################################################
if torch.cuda.device_count() >= 2 and args.cuda:
device0 = torch.device("cuda:0")
device1 = torch.device("cuda:1")
elif torch.cuda.device_count() == 1 and args.cuda:
device0 = torch.device("cuda:0")
device1 = torch.device("cuda:0")
else:
device0 = torch.device("cpu")
device1 = torch.device("cpu")
dataset = LM_QAGSC_DataLoader(args, args.train_statements, args.train_adj,
args.dev_statements, args.dev_adj,
args.test_statements, args.test_adj,
batch_size=args.batch_size, eval_batch_size=args.eval_batch_size,
device=(device0, device1),
model_name=args.encoder,
max_node_num=args.max_node_num, max_seq_length=args.max_seq_len,
is_inhouse=args.inhouse, inhouse_train_qids_path=args.inhouse_train_qids,
subsample=args.subsample, use_cache=args.use_cache)
###################################################################################################
# Build model #
###################################################################################################
model = LM_QAGSC(args, args.encoder, k=args.k, n_ntype=4, n_etype=args.num_relation, enc_dim=args.enc_dim,
fc_dim=args.fc_dim, n_fc_layer=args.fc_layer_num, p_fc=args.dropoutf, init_range=args.init_range)
model.encoder.to(device0)
model.decoder.to(device1)
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
grouped_parameters = [
{'params': [p for n, p in model.encoder.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay, 'lr': args.encoder_lr},
{'params': [p for n, p in model.encoder.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, 'lr': args.encoder_lr},
{'params': [p for n, p in model.decoder.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay, 'lr': args.decoder_lr},
{'params': [p for n, p in model.decoder.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0, 'lr': args.decoder_lr},
]
optimizer = OPTIMIZER_CLASSES[args.optim](grouped_parameters)
if args.lr_schedule == 'fixed':
try:
scheduler = ConstantLRSchedule(optimizer)
except:
scheduler = get_constant_schedule(optimizer)
elif args.lr_schedule == 'warmup_constant':
try:
scheduler = WarmupConstantSchedule(optimizer, warmup_steps=args.warmup_steps)
except:
scheduler = get_constant_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps)
elif args.lr_schedule == 'warmup_linear':
max_steps = int(args.n_epochs * (dataset.train_size() / args.batch_size))
try:
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=max_steps)
except:
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=max_steps)
print('parameters:')
for name, param in model.decoder.named_parameters():
if param.requires_grad:
print('\t{:45}\ttrainable\t{}\tdevice:{}'.format(name, param.size(), param.device))
else:
print('\t{:45}\tfixed\t{}\tdevice:{}'.format(name, param.size(), param.device))
num_params = sum(p.numel() for p in model.decoder.parameters() if p.requires_grad)
print('\ttotal:', num_params)
if args.loss == 'cross_entropy':
loss_func = nn.CrossEntropyLoss(reduction='mean')
else:
raise NotImplementedError
###################################################################################################
# Training #
###################################################################################################
print()
print('-' * 71)
global_step, best_dev_epoch = 0, 0
best_dev_acc, final_test_acc, total_loss = 0.0, 0.0, 0.0
start_time = time.time()
model.train()
# Creates once at the beginning of training
if not args.without_amp:
scaler = torch.cuda.amp.GradScaler()
freeze_net(model.encoder)
for epoch_id in range(args.n_epochs):
if epoch_id == args.unfreeze_epoch:
unfreeze_net(model.encoder)
if epoch_id == args.refreeze_epoch:
freeze_net(model.encoder)
model.train()
for qids, labels, *input_data in dataset.train():
optimizer.zero_grad()
bs = labels.size(0)
if not args.without_amp:
for a in range(0, bs, args.mini_batch_size):
b = min(a + args.mini_batch_size, bs)
# Casts operations to mixed precision
with torch.cuda.amp.autocast():
logits = model(*[x[a:b] for x in input_data])
loss = loss_func(logits, labels[a:b])
loss = loss * (b - a) / bs
# Scales the loss, and calls backward()
# to create scaled gradients
scaler.scale(loss).backward()
total_loss += loss.item()
if args.max_grad_norm > 0:
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# Unscales gradients and calls
# or skips optimizer.step()
scaler.step(optimizer)
# Updates the scale for next iteration
scaler.update()
scheduler.step()
else:
for a in range(0, bs, args.mini_batch_size):
b = min(a + args.mini_batch_size, bs)
logits = model(*[x[a:b] for x in input_data])
loss = loss_func(logits, labels[a:b])
loss = loss * (b - a) / bs
loss.backward()
total_loss += loss.item()
if args.max_grad_norm > 0:
nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# scheduler.step() # change the order due to the warning
optimizer.step()
scheduler.step()
if (global_step + 1) % args.log_interval == 0:
total_loss /= args.log_interval
ms_per_batch = 1000 * (time.time() - start_time) / args.log_interval
print('| step {:5} | lr: {:9.7f} | loss {:7.4f} | ms/batch {:7.2f} |'.format(global_step, scheduler.get_lr()[0], total_loss, ms_per_batch))
total_loss = 0
start_time = time.time()
global_step += 1
model.eval()
dev_acc = evaluate_accuracy(dataset.dev(), model)
if not args.save_model:
test_acc = evaluate_accuracy(dataset.test(), model) if args.test_statements else 0.0
else:
eval_set = dataset.test()
total_acc = []
count = 0
preds_path = os.path.join(args.save_dir, 'test_e{}_preds.csv'.format(epoch_id))
with open(preds_path, 'w') as f_preds:
with torch.no_grad():
for qids, labels, *input_data in tqdm(eval_set):
count += 1
logits = model(*input_data, detail=True)
predictions = logits.argmax(1) #[bsize, ]
preds_ranked = (-logits).argsort(1) #[bsize, n_choices]
for i, (qid, label, pred, _preds_ranked) in enumerate(zip(qids, labels, predictions, preds_ranked)):
acc = int(pred.item()==label.item())
print ('{},{}'.format(qid, chr(ord('A') + pred.item())), file=f_preds)
f_preds.flush()
total_acc.append(acc)
test_acc = float(sum(total_acc))/len(total_acc)
print('-' * 71)
print('| epoch {:3} | step {:5} | dev_acc {:7.4f} | test_acc {:7.4f} |'.format(epoch_id, global_step, dev_acc, test_acc))
print('-' * 71)
with open(log_path, 'a') as fout:
fout.write('{},{},{}\n'.format(global_step, dev_acc, test_acc))
if dev_acc >= best_dev_acc:
best_dev_acc = dev_acc
final_test_acc = test_acc
best_dev_epoch = epoch_id
print('| epoch {:3} | step {:5} | best_dev_acc {:7.4f} | final_test_acc {:7.4f} |'.format(epoch_id, global_step, dev_acc, test_acc))
if args.save_model:
torch.save([model, args], model_path +".{}".format(epoch_id))
with open(model_path +".{}.log.txt".format(epoch_id), 'w') as f:
for p in model.named_parameters():
print (p, file=f)
print(f'model saved to {model_path}')
model.train()
start_time = time.time()
if epoch_id > args.unfreeze_epoch and epoch_id - best_dev_epoch >= args.max_epochs_before_stop:
break
def eval_detail(args):
assert args.load_model_path is not None
model_path = args.load_model_path
model_state, old_args = torch.load(model_path, map_location=torch.device('cpu'))
model = LM_QAGSC(old_args, old_args.encoder, k=old_args.k, n_ntype=4, n_etype=old_args.num_relation, enc_dim=old_args.enc_dim,
fc_dim=old_args.fc_dim, n_fc_layer=old_args.fc_layer_num, p_fc=old_args.dropoutf, init_range=old_args.init_range)
model.load_state_dict(model_state.state_dict())
if torch.cuda.device_count() >= 2 and args.cuda:
device0 = torch.device("cuda:0")
device1 = torch.device("cuda:1")
elif torch.cuda.device_count() == 1 and args.cuda:
device0 = torch.device("cuda:0")
device1 = torch.device("cuda:0")
else:
device0 = torch.device("cpu")
device1 = torch.device("cpu")
model.encoder.to(device0)
model.decoder.to(device1)
model.eval()
statement_dic = {}
for statement_path in (args.train_statements, args.dev_statements, args.test_statements):
statement_dic.update(load_statement_dict(statement_path))
print ('inhouse?', args.inhouse)
print ('args.train_statements', args.train_statements)
print ('args.dev_statements', args.dev_statements)
print ('args.test_statements', args.test_statements)
print ('args.train_adj', args.train_adj)
print ('args.dev_adj', args.dev_adj)
print ('args.test_adj', args.test_adj)
dataset = LM_QAGSC_DataLoader(args, args.train_statements, args.train_adj,
args.dev_statements, args.dev_adj,
args.test_statements, args.test_adj,
batch_size=args.batch_size, eval_batch_size=args.eval_batch_size,
device=(device0, device1),
model_name=old_args.encoder,
max_node_num=old_args.max_node_num, max_seq_length=old_args.max_seq_len,
is_inhouse=args.inhouse, inhouse_train_qids_path=args.inhouse_train_qids,
subsample=args.subsample, use_cache=args.use_cache)
if not args.save_model:
dev_acc = evaluate_accuracy(dataset.dev(), model) if args.test_statements else 0.0
print('-' * 71)
print('dev_acc {:7.4f}'.format(dev_acc))
test_acc = evaluate_accuracy(dataset.test(), model) if args.test_statements else 0.0
print('test_acc {:7.4f}'.format(test_acc))
print('-' * 71)
else:
eval_set = dataset.test()
total_acc = []
count = 0
dt = datetime.datetime.today().strftime('%Y%m%d%H%M%S')
preds_path = os.path.join(args.save_dir, 'test_preds_{}.csv'.format(dt))
with open(preds_path, 'w') as f_preds:
with torch.no_grad():
for qids, labels, *input_data in tqdm(eval_set):
count += 1
logits = model(*input_data, detail=True)
predictions = logits.argmax(1) #[bsize, ]
preds_ranked = (-logits).argsort(1) #[bsize, n_choices]
for i, (qid, label, pred, _preds_ranked) in enumerate(zip(qids, labels, predictions, preds_ranked)):
acc = int(pred.item()==label.item())
print ('{},{}'.format(qid, chr(ord('A') + pred.item())), file=f_preds)
f_preds.flush()
total_acc.append(acc)
test_acc = float(sum(total_acc))/len(total_acc)
print('-' * 71)
print('test_acc {:7.4f}'.format(test_acc))
print('-' * 71)
if __name__ == '__main__':
main()