@@ -1461,7 +1461,7 @@ deploymentSpec:
1461
1461
\ = client.create_dataset(dataset=dataset, exists_ok=exists_ok)\n return\
1462
1462
\ collections.namedtuple('Outputs', ['project_id', 'dataset_id'])(\n \
1463
1463
\ ref.project, ref.dataset_id)\n\n "
1464
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1464
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1465
1465
exec-bigquery-delete-dataset-with-prefix :
1466
1466
container :
1467
1467
args :
@@ -1495,7 +1495,7 @@ deploymentSpec:
1495
1495
\ if dataset.dataset_id.startswith(dataset_prefix):\n client.delete_dataset(\n \
1496
1496
\ dataset=dataset.dataset_id,\n delete_contents=delete_contents)\n \
1497
1497
\n "
1498
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1498
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1499
1499
exec-bigquery-query-job :
1500
1500
container :
1501
1501
args :
@@ -1583,7 +1583,7 @@ deploymentSpec:
1583
1583
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n \
1584
1584
\ if write_disposition:\n config['write_disposition'] = write_disposition\n \
1585
1585
\ return config\n\n "
1586
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1586
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1587
1587
exec-build-job-configuration-query-2 :
1588
1588
container :
1589
1589
args :
@@ -1617,7 +1617,7 @@ deploymentSpec:
1617
1617
\ 'datasetId': dataset_id,\n 'tableId': table_id,\n }\n \
1618
1618
\ if write_disposition:\n config['write_disposition'] = write_disposition\n \
1619
1619
\ return config\n\n "
1620
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1620
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1621
1621
exec-get-first-valid :
1622
1622
container :
1623
1623
args :
@@ -1641,7 +1641,7 @@ deploymentSpec:
1641
1641
\ import json\n # pylint: enable=g-import-not-at-top,import-outside-toplevel,redefined-outer-name,reimported\n \
1642
1642
\n for value in json.loads(values):\n if value:\n return value\n \
1643
1643
\ raise ValueError('No valid values.')\n\n "
1644
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1644
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1645
1645
exec-get-table-location :
1646
1646
container :
1647
1647
args :
@@ -1677,7 +1677,7 @@ deploymentSpec:
1677
1677
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
1678
1678
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n \
1679
1679
\ return client.get_table(table).location\n\n "
1680
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1680
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1681
1681
exec-get-table-location-2 :
1682
1682
container :
1683
1683
args :
@@ -1713,7 +1713,7 @@ deploymentSpec:
1713
1713
\ if table.startswith('bq://'):\n table = table[len('bq://'):]\n elif\
1714
1714
\ table.startswith('bigquery://'):\n table = table[len('bigquery://'):]\n \
1715
1715
\ return client.get_table(table).location\n\n "
1716
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1716
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1717
1717
exec-load-table-from-uri :
1718
1718
container :
1719
1719
args :
@@ -1754,7 +1754,7 @@ deploymentSpec:
1754
1754
\ source_format=source_format)\n client.load_table_from_uri(\n source_uris=csv_list,\n \
1755
1755
\ destination=destination,\n project=project,\n location=location,\n \
1756
1756
\ job_config=job_config).result()\n return destination\n\n "
1757
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1757
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1758
1758
exec-make-vertex-model-artifact :
1759
1759
container :
1760
1760
args :
@@ -1778,7 +1778,7 @@ deploymentSpec:
1778
1778
Creates a google.VertexModel artifact.\"\"\"\n vertex_model.metadata =\
1779
1779
\ {'resourceName': model_resource_name}\n vertex_model.uri = (f'https://{location}-aiplatform.googleapis.com'\n \
1780
1780
\ f'/v1/{model_resource_name}')\n\n "
1781
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1781
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1782
1782
exec-maybe-replace-with-default :
1783
1783
container :
1784
1784
args :
@@ -1800,7 +1800,7 @@ deploymentSpec:
1800
1800
\ *\n\n def maybe_replace_with_default(value: str, default: str = '') ->\
1801
1801
\ str:\n \"\"\" Replaces string with another value if it is a dash.\"\"\" \
1802
1802
\n return default if not value else value\n\n "
1803
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1803
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1804
1804
exec-model-batch-predict :
1805
1805
container :
1806
1806
args :
@@ -1879,7 +1879,7 @@ deploymentSpec:
1879
1879
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n \
1880
1880
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
1881
1881
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n "
1882
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1882
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1883
1883
exec-table-to-uri-2 :
1884
1884
container :
1885
1885
args :
@@ -1909,7 +1909,7 @@ deploymentSpec:
1909
1909
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n \
1910
1910
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
1911
1911
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n "
1912
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
1912
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
1913
1913
exec-validate-inputs :
1914
1914
container :
1915
1915
args :
@@ -2005,7 +2005,7 @@ deploymentSpec:
2005
2005
\ raise ValueError(\n 'Granularity unit should be one of the\
2006
2006
\ following: '\n f'{valid_data_granularity_units}, got: {data_granularity_unit}.')\n \
2007
2007
\n "
2008
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240214_1325
2008
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240419_0625
2009
2009
pipelineInfo :
2010
2010
description : Creates a batch prediction using a Prophet model.
2011
2011
name : prophet-predict
0 commit comments