@@ -5806,7 +5806,7 @@ deploymentSpec:
5806
5806
- ' {"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5807
5807
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters['' encryption_spec_key_name'' ]}}"},
5808
5808
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5809
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125 ",
5809
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325 ",
5810
5810
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts['' transform_output'' ].uri}}",
5811
5811
"--error_file_path={{$.inputs.parameters['' root_dir'' ]}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5812
5812
"--metadata_path={{$.inputs.artifacts['' metadata'' ].uri}}", "--tuning_result_input_path={{$.inputs.artifacts['' tuning_result_input'' ].uri}}",
@@ -5840,7 +5840,7 @@ deploymentSpec:
5840
5840
- ' {"display_name": "automl-forecasting-ensemble-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}",
5841
5841
"encryption_spec": {"kms_key_name": "{{$.inputs.parameters['' encryption_spec_key_name'' ]}}"},
5842
5842
"job_spec": {"worker_pool_specs": [{"replica_count": 1, "machine_spec":
5843
- {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125 ",
5843
+ {"machine_type": "n1-highmem-8"}, "container_spec": {"image_uri": "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325 ",
5844
5844
"args": ["forecasting_mp_ensemble", "--transform_output_path={{$.inputs.artifacts['' transform_output'' ].uri}}",
5845
5845
"--error_file_path={{$.inputs.parameters['' root_dir'' ]}}/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb",
5846
5846
"--metadata_path={{$.inputs.artifacts['' metadata'' ].uri}}", "--tuning_result_input_path={{$.inputs.artifacts['' tuning_result_input'' ].uri}}",
@@ -5875,11 +5875,11 @@ deploymentSpec:
5875
5875
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters['' encryption_spec_key_name'' ]}}",
5876
5876
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5877
5877
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5878
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125 ",
5878
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325 ",
5879
5879
"\", \"args\": [\"forecasting_mp_l2l_stage_1_tuner", "\", \"--region=",
5880
5880
"{{$.inputs.parameters['' location'' ]}}", "\", \"--transform_output_path=",
5881
5881
"{{$.inputs.artifacts['' transform_output'' ].uri}}", "\", \"--training_docker_uri=",
5882
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125 ",
5882
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325 ",
5883
5883
"\", \"--reduce_search_space_mode=", "{{$.inputs.parameters['' reduce_search_space_mode'' ]}}",
5884
5884
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5885
5885
"{{$.inputs.parameters['' root_dir'' ]}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
@@ -5918,11 +5918,11 @@ deploymentSpec:
5918
5918
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters['' encryption_spec_key_name'' ]}}",
5919
5919
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5920
5920
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5921
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125 ",
5921
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325 ",
5922
5922
"\", \"args\": [\"forecasting_mp_l2l_stage_2_tuner", "\", \"--region=",
5923
5923
"{{$.inputs.parameters['' location'' ]}}", "\", \"--transform_output_path=",
5924
5924
"{{$.inputs.artifacts['' transform_output'' ].uri}}", "\", \"--training_docker_uri=",
5925
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20231029_0125 ",
5925
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240108_1325 ",
5926
5926
"\", \"--component_id={{$.pipeline_task_uuid}}", "\", \"--training_base_dir=",
5927
5927
"{{$.inputs.parameters['' root_dir'' ]}}", "/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/train",
5928
5928
"\", \"--num_parallel_trial=", "{{$.inputs.parameters['' num_parallel_trials'' ]}}",
@@ -5961,7 +5961,7 @@ deploymentSpec:
5961
5961
\"encryption_spec\": {\"kms_key_name\":\"", "{{$.inputs.parameters['' encryption_spec_key_name'' ]}}",
5962
5962
"\"}, \"job_spec\": {\"worker_pool_specs\": [{\"replica_count\": 1, \"machine_spec\":
5963
5963
{\"machine_type\": \"n1-standard-8\"}, \"container_spec\": {\"image_uri\":\"",
5964
- "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20231029_0125 ", "\",
5964
+ "us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240108_1325 ", "\",
5965
5965
\"args\": [\"cancel_l2l_tuner\", \"--error_file_path=", "{{$.inputs.parameters['' root_dir'' ]}}",
5966
5966
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/error.pb\", \"--cleanup_lro_job_infos=",
5967
5967
"{{$.inputs.parameters['' root_dir'' ]}}", "/{{$.pipeline_job_uuid}}/lro\"]}}]}}"]}'
@@ -6285,8 +6285,8 @@ deploymentSpec:
6285
6285
"/{{$.pipeline_job_uuid}}/{{$.pipeline_task_uuid}}/dataflow_tmp"]}'
6286
6286
- ' {"Concat": ["--dataflow_max_num_workers=", "{{$.inputs.parameters['' dataflow_max_num_workers'' ]}}"]}'
6287
6287
- ' {"Concat": ["--dataflow_machine_type=", "{{$.inputs.parameters['' dataflow_machine_type'' ]}}"]}'
6288
- - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20231029_0125
6289
- - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20231029_0125
6288
+ - --dataflow_worker_container_image=us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240108_1325
6289
+ - --feature_transform_engine_docker_uri=us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240108_1325
6290
6290
- ' {"Concat": ["--dataflow_disk_size_gb=", "{{$.inputs.parameters['' dataflow_disk_size_gb'' ]}}"]}'
6291
6291
- ' {"Concat": ["--dataflow_subnetwork_fully_qualified=", "{{$.inputs.parameters['' dataflow_subnetwork'' ]}}"]}'
6292
6292
- ' {"Concat": ["--dataflow_use_public_ips=", "{{$.inputs.parameters['' dataflow_use_public_ips'' ]}}"]}'
@@ -6303,7 +6303,7 @@ deploymentSpec:
6303
6303
- ' {"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
6304
6304
["--group_temporal_total_weight=", "{{$.inputs.parameters['' group_temporal_total_weight'' ]}}"]}}}'
6305
6305
- ' {"Concat": ["--encryption_spec_key_name=", "{{$.inputs.parameters['' encryption_spec_key_name'' ]}}"]}'
6306
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20231029_0125
6306
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240108_1325
6307
6307
resources :
6308
6308
cpuLimit : 8.0
6309
6309
memoryLimit : 30.0
@@ -6473,10 +6473,10 @@ deploymentSpec:
6473
6473
Returns the prediction image corresponding to the given model type.\"\"\" \
6474
6474
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6475
6475
\ must be hardcoded without any breaks in the code so string\n # replacement\
6476
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20231029_0125 ',\n \
6477
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20231029_0125 ',\n \
6478
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20231029_0125 ',\n \
6479
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20231029_0125 ',\n \
6476
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240108_1325 ',\n \
6477
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240108_1325 ',\n \
6478
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240108_1325 ',\n \
6479
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240108_1325 ',\n \
6480
6480
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6481
6481
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n \
6482
6482
\ )\n return images[model_type]\n\n "
@@ -6509,10 +6509,10 @@ deploymentSpec:
6509
6509
Returns the prediction image corresponding to the given model type.\"\"\" \
6510
6510
\n # Keys come from AutoMlTimeSeriesForecastingTrainSpec.\n # The URIs\
6511
6511
\ must be hardcoded without any breaks in the code so string\n # replacement\
6512
- \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20231029_0125 ',\n \
6513
- \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20231029_0125 ',\n \
6514
- \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20231029_0125 ',\n \
6515
- \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20231029_0125 ',\n \
6512
+ \ will work correctly.\n images = {\n 'l2l': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-l2l:20240108_1325 ',\n \
6513
+ \ 'seq2seq': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-seq2seq:20240108_1325 ',\n \
6514
+ \ 'tft': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tft:20240108_1325 ',\n \
6515
+ \ 'tide': 'us-docker.pkg.dev/vertex-ai/automl-tabular/forecasting-prediction-server-tide:20240108_1325 ',\n \
6516
6516
\ }\n if model_type not in images:\n raise ValueError(\n f'Invalid\
6517
6517
\ forecasting model type: {model_type}. Valid options are: '\n f'{images.keys()}.'\n \
6518
6518
\ )\n return images[model_type]\n\n "
@@ -6545,7 +6545,7 @@ deploymentSpec:
6545
6545
\ str) -> str:\n \"\"\" Generates the BP output's target column name.\"\" \
6546
6546
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n \
6547
6547
\ return f'predicted_{target_column}.value'\n\n "
6548
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
6548
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
6549
6549
exec-get-predictions-column-2 :
6550
6550
container :
6551
6551
args :
@@ -6574,7 +6574,7 @@ deploymentSpec:
6574
6574
\ str) -> str:\n \"\"\" Generates the BP output's target column name.\"\" \
6575
6575
\"\n if forecasting_type == 'quantile':\n return f'predicted_{target_column}.quantile_predictions'\n \
6576
6576
\ return f'predicted_{target_column}.value'\n\n "
6577
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
6577
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
6578
6578
exec-importer :
6579
6579
importer :
6580
6580
artifactUri :
@@ -7020,7 +7020,7 @@ deploymentSpec:
7020
7020
- -u
7021
7021
- -m
7022
7022
- launcher
7023
- image : gcr.io/ml-pipeline/automl-tables-private:1.0.15
7023
+ image : gcr.io/ml-pipeline/automl-tables-private:1.0.17
7024
7024
exec-model-upload-2 :
7025
7025
container :
7026
7026
args :
@@ -7049,7 +7049,7 @@ deploymentSpec:
7049
7049
- -u
7050
7050
- -m
7051
7051
- launcher
7052
- image : gcr.io/ml-pipeline/automl-tables-private:1.0.15
7052
+ image : gcr.io/ml-pipeline/automl-tables-private:1.0.17
7053
7053
exec-set-optional-inputs :
7054
7054
container :
7055
7055
args :
@@ -7112,7 +7112,7 @@ deploymentSpec:
7112
7112
\ 'model_display_name',\n 'transformations',\n ],\n \
7113
7113
\ )(\n data_source_csv_filenames,\n data_source_bigquery_table_path,\n \
7114
7114
\ model_display_name,\n transformations,\n )\n\n "
7115
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
7115
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
7116
7116
exec-split-materialized-data :
7117
7117
container :
7118
7118
args :
@@ -7158,7 +7158,7 @@ deploymentSpec:
7158
7158
\ 'w') as f:\n f.write(file_patterns[0])\n\n with tf.io.gfile.GFile(materialized_eval_split,\
7159
7159
\ 'w') as f:\n f.write(file_patterns[1])\n\n with tf.io.gfile.GFile(materialized_test_split,\
7160
7160
\ 'w') as f:\n f.write(file_patterns[2])\n\n "
7161
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20231029_0125
7161
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/dataflow-worker:20240108_1325
7162
7162
exec-string-not-empty :
7163
7163
container :
7164
7164
args :
@@ -7224,7 +7224,7 @@ deploymentSpec:
7224
7224
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n \
7225
7225
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
7226
7226
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n "
7227
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
7227
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
7228
7228
exec-table-to-uri-2 :
7229
7229
container :
7230
7230
args :
@@ -7260,7 +7260,7 @@ deploymentSpec:
7260
7260
\ if use_bq_prefix:\n bq_uri = 'bq://' + bq_uri\n outputs.append(bq_uri)\n \
7261
7261
\ return collections.namedtuple(\n 'Outputs',\n ['project_id',\
7262
7262
\ 'dataset_id', 'table_id', 'uri'],\n )(*outputs)\n\n "
7263
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20231029_0125
7263
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/kfp-v2-base:20240108_1325
7264
7264
exec-training-configurator-and-validator :
7265
7265
container :
7266
7266
args :
@@ -7305,7 +7305,7 @@ deploymentSpec:
7305
7305
["--temporal_total_weight=", "{{$.inputs.parameters['' temporal_total_weight'' ]}}"]}}}'
7306
7306
- ' {"IfPresent": {"InputName": "group_temporal_total_weight", "Then": {"Concat":
7307
7307
["--group_temporal_total_weight=", "{{$.inputs.parameters['' group_temporal_total_weight'' ]}}"]}}}'
7308
- image : us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20231029_0125
7308
+ image : us-docker.pkg.dev/vertex-ai/automl-tabular/feature-transform-engine:20240108_1325
7309
7309
pipelineInfo :
7310
7310
description : The AutoML Forecasting pipeline.
7311
7311
name : learn-to-learn-forecasting
0 commit comments