-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain.py
76 lines (54 loc) · 2.44 KB
/
pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# importing necessary packages
# for manipulating dataset
import numpy as np
import pandas as pd
# for building the model
import torch
print("Torch Version:" , torch.__version__)
torch_device = 'cuda' if torch.cuda.is_available() else 'cpu'
print("Available Torc Device:", torch_device)
# importing and loading the model
from transformers import PegasusForConditionalGeneration, PegasusTokenizerFast, Trainer, TrainingArguments
# splittin dataset
from sklearn.model_selection import train_test_split
# evaluation metric
from ignite.metrics import Rouge, RougeN, RougeL
print("\nReading the Dataset...")
df_headline = pd.read_csv('./dataset/news_headline.csv', header=0)
print(df_headline.shape)
print("\nSplitting the Dataset...")
x_train, x_test, y_train, y_test = train_test_split(df_headline['text'], df_headline['summary'], test_size=0.2,random_state=25, shuffle=True)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
x_train_list, y_train_list = x_train.tolist(), y_train.tolist()
x_test_list, y_test_list = x_test.tolist(), y_test.tolist()
print("Length of the Training and Test Set...")
print(len(x_train_list), len(y_train_list))
print(len(x_test_list), len(y_test_list))
tokenizer_large = PegasusTokenizerFast.from_pretrained("google/pegasus-large")
model_large = PegasusForConditionalGeneration.from_pretrained("google/pegasus-large").to(torch_device)
# function to get summary of a text of list of texts
def get_summary(tokenizer, model, x):
x_tokenized = tokenizer(x, truncation=True, padding = True, return_tensors="pt").to(torch_device)
print("Input X tokenized. Generating Summary ...")
y_pred_tokenized= model.generate(**x_tokenized).to(torch_device)
print("Summary Generated. Decoding Summary ...")
y_pred = tokenizer.batch_decode(y_pred_tokenized, skip_special_tokens=True)
print("Summary Decoded.")
return y_pred
def calculate_rouge(m, y_pred, y):
candidate = [i.split() for i in y_pred ]
reference = [i.split() for i in y]
# print(candidate, reference)
m.update((candidate, reference))
return m.compute()
print("\nTesting the pretrained Model:")
m = Rouge(variants=["L", 1], multiref="best")
r = 0
for i in range(0, 250, 10):
y_test_pred = get_summary(tokenizer_large,model_large, x_test_list[i:i+10])
r = calculate_rouge(m, y_test_pred, y_test_list[i:i+10])
print("Rouge Score: ", r)
print("\nPrinting the predicted sumamry:\n")
print(y_test_pred[:10])
print("\nEnd of job")