-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathassignment5-third.py
79 lines (70 loc) · 2.03 KB
/
assignment5-third.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import numpy as np
import matplotlib.pyplot as plt
"""
Defined probability for F
"""
def probability(sample):
if sample < 0 or sample > 1:
return 0
else:
return sample**3
"""
Defined probability for G|F
"""
def proposal(probability, sample):
if sample < 0 or sample > 1:
return 0
else:
return 1 - abs(sample - probability)
"""
Metropolis Hastings
"""
def MH(num_samples):
accepted_f = {}
accepted_g = {}
mean = 0.1
dev = 0.3
f_init, g_init = 0.5, 0.5
accepted_count = 0
for i in range(0, num_samples):
f = np.random.normal(mean, dev)
g = np.random.normal(mean, dev)
f = f + f_init
g = g + g_init
p_1 = probability(f)
q_1 = proposal(f, g)
p_2 = probability(f_init)
q_2 = proposal(f_init, g_init)
u = np.random.rand()
if p_2 > 0 and q_2 > 0:
acceptance = min(1, (p_1*q_1)/(p_2*q_2))
else:
acceptance = 1
if acceptance > u:
f_init = f
g_init = g
accepted_f[accepted_count] = f
accepted_g[accepted_count] = g
accepted_count += 1
return accepted_f, accepted_g
if __name__ == "__main__":
num = 1000000
accepted_1, accepted_2 = MH(num)
#Plot the samples
fig = plt.figure()
plt.xlabel('G values')
plt.ylabel('F values')
plt.xticks(np.linspace(0, 1, 11))
plt.yticks(np.linspace(0, 1, 11))
plt.hist2d(list(accepted_2.values()), list(accepted_1.values()), bins=20,cmap='jet')
plt.show()
# Display the traversal
plt.subplot(1, 2, 1)
plt.plot(list(accepted_1.keys())[0:1000], list(accepted_1.values())[0:1000])
plt.title("walk vs iteration, x")
plt.subplot(1, 2, 2)
plt.plot(list(accepted_2.keys())[0:1000], list(accepted_2.values())[0:1000],"r")
plt.title("walk vs iteration, y")
plt.show()
#Part b
print(np.cov(list(accepted_1.values()), list(accepted_2.values())) + np.mean(list(accepted_1.values()))*np.mean(list(accepted_2.values())))