-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_classifier.py
113 lines (81 loc) · 3.47 KB
/
eval_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import numpy as np
import os, sys
import argparse
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training
from common.dataset import Dataset, LabeledDataset
from chainer.training import extensions
from chainer.datasets import get_mnist
from chainer import serializers
from sklearn import metrics
import cupy
from common import dataset
from common.net import Alex, VTCNN2
import utilities as util
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
## Alex net ##
model_map = {"AlexStock": Alex, "VTCNN2" : VTCNN2}
parser = argparse.ArgumentParser(description='Chainer example: MNIST')
parser.add_argument('--batchsize', '-b', type=int, default=100,
help='Number of images in each mini-batch')
parser.add_argument('--epoch', '-e', type=int, default=20,
help='Number of sweeps over the dataset to train')
parser.add_argument('--gpu', '-g', type=int, default=-1,
help='GPU ID (negative value indicates CPU)')
parser.add_argument('--model', '-m', default='result_classifier',
help='Path to saved model')
parser.add_argument('--out', '-o', default='result_classifier',
help='Directory to output the result')
parser.add_argument('--unit', '-u', type=int, default=1000,
help='Number of units')
parser.add_argument('--model_type', '-t', type=str, default="AlexStock",
help='Which Model to run (AlexStock, VTCNN2)')
args = parser.parse_args()
###### SETUP DATASET #####
noise_levels = range(-18,20,2)
all_accs = []
for noise_level in noise_levels:
RFdata_train = dataset.RFModLabeled(noise_levels=[noise_level], test=False)
RFdata_test = dataset.RFModLabeled(noise_levels=[noise_level], test=True)
num_classes = np.unique(RFdata_train.ys).shape[0]
if args.model_type == "AlexStock":
model = L.Classifier(model_map[args.model_type](num_classes, init_weights=True, filter_height=2))
else:
model = L.Classifier(model_map[args.model_type](num_classes))
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
model.to_gpu()
serializers.load_npz(args.model, model)
x, y = RFdata_test.xs, RFdata_test.ys
xp = np if args.gpu < 0 else cupy
pred_ys = xp.zeros(y.shape)
chainer.config.train = False
for i in range(0, len(x), args.batchsize):
x_batch = xp.array(x[i:i + args.batchsize])
y_batch = xp.array(y[i:i + args.batchsize])
y_pred = model.predictor(x_batch)
acc = model.accfun(y_pred, y_batch)
acc = chainer.cuda.to_cpu(acc.data)
# print "Accuracy: ", acc
pred_ys[i:i + args.batchsize] = np.argmax(y_pred._data[0], axis=1)
chainer.config.train = True
cm = metrics.confusion_matrix(chainer.cuda.to_cpu(y), chainer.cuda.to_cpu(pred_ys))
print cm
util.graph_confusion_matrix(cm, os.path.join(args.out,'confusion_matrix__noiselevel%d.png' % (noise_level)), title='Confusion Matrix Noise Level %d' % (noise_level))
cor = np.sum(np.diag(cm))
ncor = np.sum(cm) - cor
overall_acc = cor / float(cor+ncor)
print "Overall Accuracy: ", overall_acc
all_accs.append(overall_acc)
plt.figure()
plt.plot(noise_levels, all_accs)
plt.xlabel('Evaluation SNR')
plt.ylabel('Classification Accuracy')
plt.title('Classification Accuracy for Different Evaluation SNRs')
plt.ylim([0,1])
plt.grid()
plt.savefig(os.path.join(args.out,'classification_acc_Alex_init_height2_acc.png'))