-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.ts
73 lines (61 loc) · 2.87 KB
/
index.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import compare from '@/internal/compare';
/**
* 归并两个子数组为一个排序数组。/ Merge two subarrays into one sorted array.
* @param {T[]} array 原数组 / Original array
* @param {number} start 起始索引 / Starting index
* @param {number} mid 中间索引 / Middle index
* @param {number} end 结束索引 / Ending index
* @param {T[]} tempArray 临时数组 / Temporary array
* @param {comp} comp 比较类实例 / Comparison class instance
*/
const toMerge = <T>(array: T[], start: number, mid: number, end: number, tempArray: T[], comp: compare): void => {
let i = start,
j = mid + 1,
k = 0;
// 归并到临时数组
while (i <= mid && j <= end) {
tempArray[k++] = comp.lessThanOrEqual(array[i], array[j]) ? array[i++] : array[j++];
}
// 复制剩余的左侧元素
while (i <= mid) {
tempArray[k++] = array[i++];
}
// 复制剩余的右侧元素
while (j <= end) {
tempArray[k++] = array[j++];
}
// 将排序后的临时数组复制回原数组
for (i = start, k = 0; i <= end; i++, k++) {
array[i] = tempArray[k];
}
};
/**
* 归并排序 / Merge Sort
* @description 归并排序是一种稳定的排序算法,通过递归方式将数据分为更小的子集合,然后合并有序的子集合 / Merge sort is a stable sorting algorithm that divides data into smaller subsets through recursion, then merges the ordered subsets
* @usageScenario 适用于大型数据集,特别是链表类型的数据结构 / Suitable for large datasets, especially for linked-list type data structures
* @timeComplexity 平均、最坏和最好情况均为 O(n log n) / Average, worst, and best cases all O(n log n)
* @param array {T[]} 要排序的数组 / Array to be sorted
* @param {modifyOriginal} [modifyOriginal = true] 是否修改原数组 / Whether to modify the original array
* @param {(a: T, b: T) => number} [compareFunction] 比较函数,定义元素的排序方式 / Comparison function, defines the sorting order of elements
* @param {boolean} [reverse = false] 是否反转结果 / Whether to reverse the result
* @returns {T[]} 返回排序后的数组 / Returns the sorted array
*/
const merge = <T>(array: T[], modifyOriginal: boolean = true, compareFunction?: (a: T, b: T) => number, reverse: boolean = false): T[] => {
!modifyOriginal && (array = [...array]);
const n = array.length;
if (array.length <= 1) {
return array;
}
const comp = new compare(compareFunction);
reverse && comp.reverse();
const tempArray: T[] = new Array(Math.ceil(n / 2));
for (let size = 1; size < n; size *= 2) {
for (let leftStart = 0; leftStart < n - 1; leftStart += 2 * size) {
const mid = Math.min(leftStart + size - 1, n - 1);
const rightEnd = Math.min(leftStart + 2 * size - 1, n - 1);
toMerge(array, leftStart, mid, rightEnd, tempArray, comp);
}
}
return array;
};
export default merge;