-
Notifications
You must be signed in to change notification settings - Fork 5
/
detect-apt-through-user-behavior.html
429 lines (299 loc) · 23.6 KB
/
detect-apt-through-user-behavior.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
<!doctype html>
<!--[if lt IE 7]><html class="no-js lt-ie9 lt-ie8 lt-ie7" lang="en"> <![endif]-->
<!--[if (IE 7)&!(IEMobile)]><html class="no-js lt-ie9 lt-ie8" lang="en"><![endif]-->
<!--[if (IE 8)&!(IEMobile)]><html class="no-js lt-ie9" lang="en"><![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en"><!--<![endif]-->
<head>
<meta charset="utf-8">
<title>基于行为相似性度量检测APT活动 – KINGX</title>
<meta name="description" content="Data finds abnormal">
<meta name="keywords" content="DataScience, MachineLearning, APT">
<!-- Twitter Cards -->
<meta name="twitter:card" content="summary">
<meta name="twitter:image" content="https://kingx.me/images/">
<meta name="twitter:title" content="基于行为相似性度量检测APT活动">
<meta name="twitter:description" content="Data finds abnormal">
<meta name="twitter:creator" content="@https://twitter.com/KINGX_CN">
<!-- Open Graph -->
<meta property="og:locale" content="en_US">
<meta property="og:type" content="article">
<meta property="og:title" content="基于行为相似性度量检测APT活动">
<meta property="og:description" content="Data finds abnormal">
<meta property="og:url" content="https://kingx.me/detect-apt-through-user-behavior.html">
<meta property="og:site_name" content="KINGX">
<link rel="canonical" href="https://kingx.me/detect-apt-through-user-behavior.html">
<link href="https://kingx.me/feed.xml" type="application/atom+xml" rel="alternate" title="KINGX Feed">
<!-- http://t.co/dKP3o1e -->
<meta name="HandheldFriendly" content="True">
<meta name="MobileOptimized" content="320">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<!-- For all browsers -->
<link rel="stylesheet" href="https://kingx.me/assets/css/main.css">
<!-- Webfonts -->
<link href="//fonts.googleapis.com/css?family=Lato:300,400,700,300italic,400italic" rel="stylesheet" type="text/css">
<meta http-equiv="cleartype" content="on">
<!-- Load Modernizr -->
<script src="https://kingx.me/assets/js/vendor/modernizr-2.6.2.custom.min.js"></script>
<!-- Icons -->
<!-- 16x16 -->
<link rel="shortcut icon" href="https://kingx.me/favicon.ico">
<!-- 32x32 -->
<link rel="shortcut icon" href="https://kingx.me/favicon.png">
<!-- 57x57 (precomposed) for iPhone 3GS, pre-2011 iPod Touch and older Android devices -->
<link rel="apple-touch-icon-precomposed" href="https://kingx.me/images/apple-touch-icon-precomposed.png">
<!-- 72x72 (precomposed) for 1st generation iPad, iPad 2 and iPad mini -->
<link rel="apple-touch-icon-precomposed" sizes="72x72" href="https://kingx.me/images/apple-touch-icon-72x72-precomposed.png">
<!-- 114x114 (precomposed) for iPhone 4, 4S, 5 and post-2011 iPod Touch -->
<link rel="apple-touch-icon-precomposed" sizes="114x114" href="https://kingx.me/images/apple-touch-icon-114x114-precomposed.png">
<!-- 144x144 (precomposed) for iPad 3rd and 4th generation -->
<link rel="apple-touch-icon-precomposed" sizes="144x144" href="https://kingx.me/images/apple-touch-icon-144x144-precomposed.png">
<style type="text/css">body {background-image:url(https://kingx.me/images/triangular.png);}</style>
</head>
<body id="post" >
<!--[if lt IE 9]><div class="upgrade"><strong><a href="http://whatbrowser.org/">Your browser is quite old!</strong> Why not upgrade to a different browser to better enjoy this site?</a></div><![endif]-->
<nav id="dl-menu" class="dl-menuwrapper" role="navigation">
<button class="dl-trigger">Open Menu</button>
<ul class="dl-menu">
<li><a href="https://kingx.me/">Home</a></li>
<li>
<a href="#">About</a>
<ul class="dl-submenu">
<li>
<img src="https://kingx.me/images/avatar.jpg" alt="KINGX photo" class="author-photo">
<h4>KINGX</h4>
<p>What is Security</p>
</li>
<li><a href="https://kingx.me/about/"><span class="btn btn-inverse">Learn More</span></a></li>
<li>
<a href="mailto:root#kingx.me"><i class="fa fa-fw fa-envelope"></i> Email</a>
</li>
<li>
<a href="https://twitter.com/KINGX_CN"><i class="fa fa-fw fa-twitter"></i> Twitter</a>
</li>
<li>
<a href="https://weibo.com/u/1624430122"><i class="fa fa-fw fa-weibo"></i> Weibo</a>
</li>
<li>
<a href="https://github.com/KINGX-Code"><i class="fa fa-fw fa-github"></i> GitHub</a>
</li>
</ul><!-- /.dl-submenu -->
</li>
<!-- <li>
<a href="#">Posts</a>
<ul class="dl-submenu">
<li><a href="https://kingx.me/posts/">All Posts</a></li>
<li><a href="https://kingx.me/tags/">All Tags</a></li>
</ul>
</li> -->
<li><a href="https://kingx.me/latest-events/" >Security Incidents</a></li>
<li><a href="https://kingx.me/latest-vulns/" >Vulnerabilities</a></li>
<li><a href="https://kingx.me/pentest-tools/" >Red Team</a></li>
<li><a href="https://kingx.me/cheatsheet/" >CheatSheet</a></li>
<li><a href="https://kingx.me/stop-learning/" >Stop Learning</a></li>
<li><a href="https://kingx.me/posts/" >Archives</a></li>
<li><a href="https://kingx.me/tags/" >Tags</a></li>
<li><a href="https://kingx.me/links/" >Links</a></li>
<li><a href="https://kingx.me/feed.xml" >RSS</a></li>
</ul><!-- /.dl-menu -->
</nav><!-- /.dl-menuwrapper -->
<div id="main" role="main">
<article class="hentry">
<header class="header-title">
<div class="header-title-wrap">
<h1 class="entry-title"><a href="https://kingx.me/detect-apt-through-user-behavior.html" rel="bookmark" title="基于行为相似性度量检测APT活动">基于行为相似性度量检测APT活动</a></h1>
<h2><span class="entry-date date published"><time datetime="2017-12-04T00:00:00-05:00">December 04, 2017, KINGX</time></span></h2>
<p class="entry-reading-time">
<i class="fa fa-clock-o"></i>
Reading time ~1 minute
<span id="busuanzi_container_page_pv">
/ Page View <span id="busuanzi_value_page_pv">0</span> / Site Visitor <span id="busuanzi_value_site_uv">0</span>
</span>
</p><!-- /.entry-reading-time -->
</div><!-- /.header-title-wrap -->
</header>
<div class="entry-content">
<span class="entry-tags" style="color:red;font-size:13px;margin-bottom: 0px;">「声明:本博客中涉及到的相关漏洞均为官方已经公开并修复的漏洞,涉及到的安全技术也仅用于企业安全建设和安全对抗研究。本文仅限业内技术研究与讨论,严禁用于非法用途,否则产生的一切后果自行承担。」</span>
<h2 id="1-概述">1. 概述</h2>
<p>在基于大数据的安全防御建设中,为了从数据挖掘出异常行为,通常我们需要计算不同个体之间的差异,从而通过相似性和类别来判定异常行为和正常行为,找出偏离用户行为基线的异常点。数据科学中有很多常用的”距离“、”相似性“的计算方法。我们可以根据数据特性而采用不同的度量方法。比如:</p>
<ul>
<li>空间:欧氏距离</li>
<li>路径:曼哈顿距离</li>
<li>国际象棋国王:切比雪夫距离</li>
</ul>
<p>以上三种的统一形式: 闵可夫斯基距离</p>
<ul>
<li>加权:标准化欧氏距离</li>
<li>排除量纲和依存:马氏距离</li>
<li>向量差距:夹角余弦</li>
<li>编码差别:汉明距离</li>
<li>集合近似度:杰卡德类似系数与距离</li>
<li>相关:相关系数与相关距离</li>
</ul>
<p>定义一个距离函数,需要满足几个准则:</p>
<ol>
<li>仅到自己的距离为零</li>
<li>距离非负</li>
<li>三角形法则,两边之和大于第三边</li>
</ol>
<h2 id="2-余弦相似度向量内积">2. 余弦相似度(向量内积)</h2>
<p>适合高维度向量vectors的相似度计算。两个向量的Cosine距离就是这两个向量之间的夹角。
Cosine值越接近0表示夹角越大,越接近于1表示夹角越小。</p>
<p>http://www.cnblogs.com/chaosimple/p/3160839.html</p>
<p>余弦相似度,又称为余弦相似性,是通过计算两个向量的夹角余弦值来评估他们的相似度。余弦相似度将向量根据坐标值,绘制到向量空间中,如最常见的二维空间。</p>
<p>将向量根据坐标值,绘制到向量空间中。如最常见的二维空间。
求得他们的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征,这两个向量的相似性。夹角越小,余弦值越接近于1,它们的方向更加吻合,则越相似。</p>
<h3 id="计算方法">计算方法</h3>
<p>假设两个向量,a向量是(x1,x2,x3…) b向量是 (y1,y2,y3…)</p>
<p>假设a向量是(x1, y1,…),b向量是(x2, y2,…)</p>
<p>x1<em>x2+y1</em>y2+……/更号(x1^2+y1^2…)+更号(x2^2+y2^2…)</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="kn">from</span> <span class="nn">scipy.spatial.distance</span> <span class="kn">import</span> <span class="n">cosine</span>
<span class="n">cosine_value</span> <span class="o">=</span> <span class="mi">1</span><span class="o">-</span><span class="n">cosine</span><span class="p">(</span><span class="n">p</span><span class="p">,</span><span class="n">q</span><span class="p">)</span>
</code></pre></div></div>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code><span class="c1">#-*-coding:utf-8-*-
</span><span class="k">def</span> <span class="nf">cos</span><span class="p">(</span><span class="n">vector1</span><span class="p">,</span><span class="n">vector2</span><span class="p">):</span>
<span class="n">dot_product</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">;</span>
<span class="n">normA</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">;</span>
<span class="n">normB</span> <span class="o">=</span> <span class="mf">0.0</span><span class="p">;</span>
<span class="k">for</span> <span class="n">a</span><span class="p">,</span><span class="n">b</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">vector1</span><span class="p">,</span><span class="n">vector2</span><span class="p">):</span>
<span class="n">dot_product</span> <span class="o">+=</span> <span class="n">a</span><span class="o">*</span><span class="n">b</span>
<span class="n">normA</span> <span class="o">+=</span> <span class="n">a</span><span class="o">**</span><span class="mi">2</span>
<span class="n">normB</span> <span class="o">+=</span> <span class="n">b</span><span class="o">**</span><span class="mi">2</span>
<span class="k">if</span> <span class="n">normA</span> <span class="o">==</span> <span class="mf">0.0</span> <span class="ow">or</span> <span class="n">normB</span><span class="o">==</span><span class="mf">0.0</span><span class="p">:</span>
<span class="k">return</span> <span class="bp">None</span>
<span class="k">else</span><span class="p">:</span>
<span class="k">return</span> <span class="n">dot_product</span> <span class="o">/</span> <span class="p">((</span><span class="n">normA</span><span class="o">*</span><span class="n">normB</span><span class="p">)</span><span class="o">**</span><span class="mf">0.5</span><span class="p">)</span>
</code></pre></div></div>
<h2 id="3-欧氏距离">3. 欧氏距离</h2>
<p>只的是在多维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在数学上也可以成为范数。</p>
<h3 id="计算方法-1">计算方法</h3>
<p>两个向量各个元素的差值的平方求和然后求平方根。</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>dist = numpy.sqrt(numpy.sum(numpy.square(vec1 - vec2)))
或者
dist = numpy.linalg.norm(vec1 - vec2)
</code></pre></div></div>
<h2 id="4-kl散度相对熵-kullback-leibler-divergence">4. KL散度(相对熵) Kullback-Leibler divergence</h2>
<p>KL散度是用来度量使用基于Q的编码来编码来自P的样本平均所需的额外的位元数,是描述两个概率分布P和Q差异的一种方法。测量两个概率分布之间的距离。可以看做是概率分布P到目标概率Q之间距离。一般情况下,P表示数据的真是分布,Q表示数据的理论分布,也可以理解为影响P分布的一种因素。计算公式为:</p>
<table>
<tbody>
<tr>
<td> DKL(P</td>
<td> </td>
<td>Q) =ΣP(i)log(P(i)/Q(i))</td>
</tr>
</tbody>
</table>
<p>KL散度是不对称的,如果希望对称:</p>
<p>Ds(p1, p2) = (D(p1, p2) + D(p2, p1)) / 2</p>
<p><strong>Tips:</strong></p>
<p>KL散度需要满足</p>
<ul>
<li>概率P和Q各自总和均为1</li>
<li>概率P(i)和Q(i)均大于0</li>
</ul>
<p>时才有定义。</p>
<h3 id="计算方法-2">计算方法</h3>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code> <span class="kn">import</span> <span class="nn">scipy.stats</span>
<span class="n">a</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">970.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">]</span>
<span class="n">b</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">102.0</span><span class="p">,</span><span class="mf">75.625</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">,</span><span class="mf">0.0</span><span class="p">]</span>
<span class="n">KL</span> <span class="o">=</span> <span class="n">scipy</span><span class="o">.</span><span class="n">stats</span><span class="o">.</span><span class="n">entropy</span><span class="p">(</span><span class="n">a</span><span class="p">,</span> <span class="n">b</span><span class="p">)</span>
</code></pre></div></div>
<p>scipy.stats.entropy(p, q) 会计算:</p>
<div class="highlighter-rouge"><div class="highlight"><pre class="highlight"><code>S = sum(pk * log(pk / qk), axis=0).
</code></pre></div></div>
<p>除了用函数库之外,也可以自行编程实现计算:</p>
<div class="language-python highlighter-rouge"><div class="highlight"><pre class="highlight"><code> <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="n">np</span>
<span class="n">a</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">1.001</span><span class="p">,</span><span class="mf">1.0</span><span class="p">,</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">]</span>
<span class="n">b</span> <span class="o">=</span> <span class="p">[</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000000001</span><span class="p">,</span><span class="mf">0.9</span><span class="p">,</span><span class="mf">0.1</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">,</span><span class="mf">0.00000001</span><span class="p">]</span>
<span class="c1"># 归一化
</span> <span class="n">pa</span> <span class="o">=</span> <span class="n">a</span><span class="o">/</span><span class="n">np</span><span class="o">.</span><span class="nb">sum</span><span class="p">(</span><span class="n">a</span><span class="p">)</span>
<span class="n">pb</span> <span class="o">=</span> <span class="n">b</span><span class="o">/</span><span class="n">np</span><span class="o">.</span><span class="nb">sum</span><span class="p">(</span><span class="n">b</span><span class="p">)</span>
<span class="n">KL</span> <span class="o">=</span> <span class="mf">0.0</span>
<span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="mi">10</span><span class="p">):</span>
<span class="n">KL</span> <span class="o">+=</span> <span class="n">pa</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">*</span> <span class="n">np</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">pa</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">/</span> <span class="n">pb</span><span class="p">[</span><span class="n">i</span><span class="p">])</span>
<span class="c1"># print(str(px[i]) + ' ' + str(py[i]) + ' ' + str(px[i] * np.log(px[i] / py[i])))
</span> <span class="k">print</span><span class="p">(</span><span class="n">KL</span><span class="p">)</span>
</code></pre></div></div>
<h3 id="适用场景">适用场景</h3>
<p>《【原】浅谈KL散度(相对熵)在用户画像中的应用》https://www.cnblogs.com/charlotte77/p/5392052.html</p>
<h2 id="5-k-s统计作为距离度量">5. K-S统计作为距离度量</h2>
<h2 id="6-检测分布尖峰的变化">6. 检测分布尖峰的变化</h2>
<h2 id="references-使用-anomalize-算法进行异常检测与威胁狩猎">References 使用 Anomalize 算法进行异常检测与威胁狩猎</h2>
<p>https://holisticinfosec.blogspot.com/2018/06/toolsmith-133-anomaly-detection-threat.html</p>
<footer class="entry-meta">
<span class="entry-tags" style="color:black;font-size:13px;margin-bottom: 0px;">欢迎订阅我的微信公众号</span>
<img src="/images/secengine.jpg" alt="welcome subscribe"/>
<span class="entry-tags"><a href="https://kingx.me/tags/#DataScience" title="Pages tagged DataScience" class="tag"><span class="term">DataScience</span></a><a href="https://kingx.me/tags/#MachineLearning" title="Pages tagged MachineLearning" class="tag"><span class="term">MachineLearning</span></a><a href="https://kingx.me/tags/#APT" title="Pages tagged APT" class="tag"><span class="term">APT</span></a></span>
<div class="social-share">
<ul class="socialcount socialcount-small inline-list">
<li class="weibo"><a href="http://service.weibo.com/share/share.php?title=分享KINGX的文章《基于行为相似性度量检测APT活动》&url=https://kingx.me/detect-apt-through-user-behavior.html&source=bookmark" title="Share on Weibo" target="_blank"><span class="count"><i class="fa fa-weibo"></i> WEIBO</span></a></li>
<li class="facebook"><a href="https://www.facebook.com/sharer/sharer.php?u=https://kingx.me/detect-apt-through-user-behavior.html" title="Share on Facebook"><span class="count"><i class="fa fa-facebook-square"></i> Like</span></a></li>
<li class="twitter"><a href="https://twitter.com/intent/tweet?text=https://kingx.me/detect-apt-through-user-behavior.html" title="Share on Twitter"><span class="count"><i class="fa fa-twitter-square"></i> Tweet</span></a></li>
<li class="googleplus"><a href="https://plus.google.com/share?url=https://kingx.me/detect-apt-through-user-behavior.html" title="Share on Google Plus"><span class="count"><i class="fa fa-google-plus-square"></i> +1</span></a></li>
</ul>
</div><!-- /.social-share -->
<!--
<div class="ds-share" data-thread-key="/detect-apt-through-user-behavior" data-title="基于行为相似性度量检测APT活动" data-images="" data-content="基于行为相似性度量检测APT活动" data-url="https://kingx.me/detect-apt-through-user-behavior.html">
<div class="ds-share-inline">
<ul class="ds-share-icons-16">
<li data-toggle="ds-share-icons-more"><a class="ds-more" href="javascript:void(0);">分享到:</a></li>
<li><a class="ds-weibo" href="javascript:void(0);" data-service="weibo">微博</a></li>
<li><a class="ds-qzone" href="javascript:void(0);" data-service="qzone">QQ空间</a></li>
<li><a class="ds-qqt" href="javascript:void(0);" data-service="qqt">腾讯微博</a></li>
<li><a class="ds-wechat" href="javascript:void(0);" data-service="wechat">微信</a></li>
</ul>
<div class="ds-share-icons-more">
</div>
</div>
</div>
-->
</footer>
</div><!-- /.entry-content -->
<div class="read-more">
<div class="read-more-header">
<a href="https://kingx.me/Struts2-S2-052.html" class="read-more-btn">Read More</a>
</div><!-- /.read-more-header -->
<div class="read-more-content">
<h3><a href="https://kingx.me/ai-driven-static-code-audit-vulnhuntr.html" title="探索 AI 驱动的代码安全工具 VulnHuntr">探索 AI 驱动的代码安全工具 VulnHuntr</a></h3>
<p>Explore VulnHuntr <a href="https://kingx.me/ai-driven-static-code-audit-vulnhuntr.html">Continue reading</a></p>
</div><!-- /.read-more-content -->
<div class="read-more-list">
<div class="list-item">
<h4><a href="https://kingx.me/Patch-log4j.html" title="Log4j 严重漏洞修复方案参考 CVE-2021-44228">Log4j 严重漏洞修复方案参考 CVE-2021-44228</a></h4>
<span>Published on December 12, 2021</span>
</div><!-- /.list-item -->
<div class="list-item">
<h4><a href="https://kingx.me/Thinking-about-the-RedTeam-Engagement.html" title="浅谈大规模红蓝对抗攻与防">浅谈大规模红蓝对抗攻与防</a></h4>
<span>Published on October 12, 2020</span>
</div><!-- /.list-item -->
</div><!-- /.read-more-list -->
</div><!-- /.read-more -->
</article>
</div><!-- /#main -->
<div class="footer-wrapper">
<footer role="contentinfo">
<span>© 2024 KINGX. Powered by Jekyll using the HPSTR Theme.</span>
</footer>
</div><!-- /.footer-wrapper -->
<!--<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>-->
<!-- <script src="http://libs.baidu.com/jquery/1.9.1/jquery.min.js"></script> -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<script>window.jQuery || document.write('<script src="https://kingx.me/assets/js/vendor/jquery-1.9.1.min.js"><\/script>')</script>
<script src="https://kingx.me/assets/js/scripts.min.js"></script>
<script>
var _hmt = _hmt || [];
(function() {
var hm = document.createElement("script");
if(location.host=="kingx.me"){
hm.src = "https://hm.baidu.com/hm.js?d11d8512e0bc6992b9c9bbf2d266ce31";
}else if(location.host=="kingx.sinaapp.com"){
hm.src = "https://hm.baidu.com/hm.js?d1b3dbd97b73868454f102755fdf51ba";
}
var s = document.getElementsByTagName("script")[0];
s.parentNode.insertBefore(hm, s);
})();
</script>
<!-- Busuanzi Analytics -->
<script async src="//busuanzi.ibruce.info/busuanzi/2.3/busuanzi.pure.mini.js"></script>
</body>
</html>